Question Number 73628 by Waseem Yaqoob last updated on 14/Nov/19
$${find}\:{coefficient}\:{of}\:{x}^{{r}\:} \:{in}\:{the}\:{expension}\:{of}\: \\ $$$$\:\left(\mathrm{2}{x}−\mathrm{6}{y}\right)^{−\mathrm{8}} \\ $$
Answered by mr W last updated on 14/Nov/19
$$\left(\mathrm{2}{x}−\mathrm{6}{y}\right)^{−\mathrm{8}} \\ $$$$=\left(−\mathrm{6}{y}\right)^{−\mathrm{8}} \left(\mathrm{1}−\frac{{x}}{\mathrm{3}{y}}\right)^{−\mathrm{8}} \\ $$$$=\left(−\mathrm{6}{y}\right)^{−\mathrm{8}} \underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{7}} ^{{r}+\mathrm{7}} \left(\frac{{x}}{\mathrm{3}{y}}\right)^{{r}} \\ $$$${coef}.\:{of}\:{x}^{{r}} : \\ $$$${a}_{{r}} =\left(−\mathrm{6}{y}\right)^{−\mathrm{8}} \left(\frac{\mathrm{1}}{\mathrm{3}{y}}\right)^{{r}} {C}_{\mathrm{7}} ^{{r}+\mathrm{7}} =\frac{{C}_{\mathrm{7}} ^{{r}+\mathrm{7}} }{\mathrm{2}^{\mathrm{8}} \left(\mathrm{3}{y}\right)^{\mathrm{8}+{r}} } \\ $$$${example}: \\ $$$${a}_{\mathrm{5}} =\frac{{C}_{\mathrm{7}} ^{\mathrm{12}} }{\mathrm{2}^{\mathrm{8}} \left(\mathrm{3}{y}\right)^{\mathrm{13}} }=\frac{\mathrm{11}}{\mathrm{5668704}{y}^{\mathrm{13}} } \\ $$
Commented by Waseem Yaqoob last updated on 16/Nov/19
$${Kindly}\:{chek}\:{and}\:{give}\:{answer}\:{of}\:{q} \\ $$$$\mathrm{73723}+\mathrm{73724}+\mathrm{73725} \\ $$
Commented by Waseem Yaqoob last updated on 16/Nov/19
Commented by mr W last updated on 16/Nov/19
$${i}\:{answer}\:{a}\:{question}\:{when}\:{i}\:{can}\:{and} \\ $$$${when}\:{i}\:{like},\:{automatically}. \\ $$