Menu Close

Find-complex-number-whose-additive-inverse-is-equal-to-its-multiplicative-inverse-




Question Number 6512 by Rasheed Soomro last updated on 30/Jun/16
Find complex number whose additive   inverse is equal to its multiplicative  inverse.
$${Find}\:{complex}\:{number}\:{whose}\:{additive}\: \\ $$$${inverse}\:{is}\:{equal}\:{to}\:{its}\:{multiplicative} \\ $$$${inverse}. \\ $$
Commented by Temp last updated on 30/Jun/16
What is additive and multiplicitive  inverse?
$$\mathrm{What}\:\mathrm{is}\:\mathrm{additive}\:\mathrm{and}\:\mathrm{multiplicitive} \\ $$$$\mathrm{inverse}? \\ $$
Commented by Rasheed Soomro last updated on 30/Jun/16
−(a,b)=(−a,−b)  and   (a,b)^(−1) =((a/(a^2 +b^2 )),((−b)/(a^2 +b^2 )))  (a,b) is a complex number a+ib  −(a,b)  means additive inverse of (a,b)  (a,b)^(−1)  means multiplicative inverse of (a,b).  Do you want to ask definitions of “additive inverse”  and  “multiplicative inverse”?
$$−\left({a},{b}\right)=\left(−{a},−{b}\right)\:\:{and}\:\:\:\left({a},{b}\right)^{−\mathrm{1}} =\left(\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} },\frac{−{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$$\left({a},{b}\right)\:{is}\:{a}\:{complex}\:{number}\:{a}+{ib} \\ $$$$−\left({a},{b}\right)\:\:{means}\:{additive}\:{inverse}\:{of}\:\left({a},{b}\right) \\ $$$$\left({a},{b}\right)^{−\mathrm{1}} \:{means}\:{multiplicative}\:{inverse}\:{of}\:\left({a},{b}\right). \\ $$$${Do}\:{you}\:{want}\:{to}\:{ask}\:{definitions}\:{of}\:“{additive}\:{inverse}'' \\ $$$${and}\:\:“{multiplicative}\:{inverse}''? \\ $$
Answered by Yozzii last updated on 30/Jun/16
Let z=a+bi, with a,b∈R and z≠0.  ⇒additive inverse of z is w=−a−bi=−z  since z+w=0 and 0 is the additive identity.  Multiplicative inverse of z is t such  that zt=1 and 1 is multiplicative identity.  ∴t=(1/z)=(1/(a+bi))=((a−bi)/(a^2 +b^2 ))=(a/(a^2 +b^2 ))−(b/(a^2 +b^2 ))i  If t=w then  −a−bi=(a/(a^2 +b^2 ))−(b/(a^2 +b^2 ))i         (∗)  Equating the real parts of (∗)  ⇒−a=(a/(a^2 +b^2 ))⇒a((1/(a^2 +b^2 ))+1)=0  Since a,b∈R⇒a=0 and (1/(a^2 +b^2 ))+1≠0.  Equating the imaginary parts of (∗)  gives −b=((−b)/(a^2 +b^2 ))  Since a=0 & z≠0⇒b≠0  ⇒1=(1/(0+b^2 ))⇒b=±1.  ∴z=±i.
$${Let}\:{z}={a}+{bi},\:{with}\:{a},{b}\in\mathbb{R}\:{and}\:{z}\neq\mathrm{0}. \\ $$$$\Rightarrow{additive}\:{inverse}\:{of}\:{z}\:{is}\:{w}=−{a}−{bi}=−{z} \\ $$$${since}\:{z}+{w}=\mathrm{0}\:{and}\:\mathrm{0}\:{is}\:{the}\:{additive}\:{identity}. \\ $$$${Multiplicative}\:{inverse}\:{of}\:{z}\:{is}\:{t}\:{such} \\ $$$${that}\:{zt}=\mathrm{1}\:{and}\:\mathrm{1}\:{is}\:{multiplicative}\:{identity}. \\ $$$$\therefore{t}=\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{{a}+{bi}}=\frac{{a}−{bi}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{i} \\ $$$${If}\:{t}={w}\:{then} \\ $$$$−{a}−{bi}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{i}\:\:\:\:\:\:\:\:\:\left(\ast\right) \\ $$$${Equating}\:{the}\:{real}\:{parts}\:{of}\:\left(\ast\right) \\ $$$$\Rightarrow−{a}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\Rightarrow{a}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{1}\right)=\mathrm{0} \\ $$$${Since}\:{a},{b}\in\mathbb{R}\Rightarrow{a}=\mathrm{0}\:{and}\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{1}\neq\mathrm{0}. \\ $$$${Equating}\:{the}\:{imaginary}\:{parts}\:{of}\:\left(\ast\right) \\ $$$${gives}\:−{b}=\frac{−{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${Since}\:{a}=\mathrm{0}\:\&\:{z}\neq\mathrm{0}\Rightarrow{b}\neq\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}=\frac{\mathrm{1}}{\mathrm{0}+{b}^{\mathrm{2}} }\Rightarrow{b}=\pm\mathrm{1}. \\ $$$$\therefore{z}=\pm{i}. \\ $$$$ \\ $$
Commented by Rasheed Soomro last updated on 30/Jun/16
THαnX!
$$\mathcal{TH}\alpha{n}\mathcal{X}! \\ $$
Answered by Rasheed Soomro last updated on 01/Jul/16
Simple method  Let  the required complex number is z  According to the codition     −z=(1/z) ⇒ −z^2 =1 ⇒ z^2 =−1 ⇒ z=±(√(−1))=±i
$${Simple}\:{method} \\ $$$${Let}\:\:{the}\:{required}\:{complex}\:{number}\:{is}\:{z} \\ $$$${According}\:{to}\:{the}\:{codition} \\ $$$$\:\:\:−{z}=\frac{\mathrm{1}}{{z}}\:\Rightarrow\:−{z}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:{z}^{\mathrm{2}} =−\mathrm{1}\:\Rightarrow\:{z}=\pm\sqrt{−\mathrm{1}}=\pm{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *