Menu Close

Find-complex-numbers-and-such-that-m-n-and-m-n-m-n-Z-Determine-formula-for-the-number-of-pairs-fulfilling-the-above-conditions-You-may-ignore-this-part




Question Number 1498 by Rasheed Soomro last updated on 14/Aug/15
Find complex numbers α and  β  such that  α^( m) =β^(  n)     and   β^(  m) =α^n   , m,n ∈ Z  Determine formula for the number of pairs (α,β) fulfilling the  above conditions.  ( You may ignore this part in your answer)
$$\mathrm{Find}\:\mathrm{complex}\:\mathrm{numbers}\:\alpha\:{and}\:\:\beta\:\:\mathrm{such}\:\mathrm{that} \\ $$$$\alpha^{\:{m}} =\beta^{\:\:{n}} \:\:\:\:{and}\:\:\:\beta^{\:\:{m}} =\alpha^{\mathrm{n}} \:\:,\:{m},{n}\:\in\:\mathbb{Z} \\ $$$$\boldsymbol{\mathrm{D}}\mathrm{etermine}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{pairs}\:\left(\alpha,\beta\right)\:\mathrm{fulfilling}\:\mathrm{the} \\ $$$$\mathrm{above}\:\mathrm{conditions}.\:\:\left(\:\mathrm{You}\:\mathrm{may}\:\mathrm{ignore}\:\mathrm{this}\:\mathrm{part}\:\mathrm{in}\:\mathrm{your}\:\mathrm{answer}\right) \\ $$
Commented by 123456 last updated on 14/Aug/15
(n,m)≠(0,0)⇒(α,β)=(0,0) is one of the solutions
$$\left({n},{m}\right)\neq\left(\mathrm{0},\mathrm{0}\right)\Rightarrow\left(\alpha,\beta\right)=\left(\mathrm{0},\mathrm{0}\right)\:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solutions} \\ $$
Commented by Rasheed Ahmad last updated on 14/Aug/15
An other pair is (1,1) but these are  real solutions only.
$$\mathrm{An}\:\mathrm{other}\:\mathrm{pair}\:\mathrm{is}\:\left(\mathrm{1},\mathrm{1}\right)\:{but}\:{these}\:{are} \\ $$$${real}\:{solutions}\:{only}. \\ $$
Commented by 123456 last updated on 15/Aug/15
 { ((α^m =β^n )),((β^m =α^n )) :}⇒_(β→α) ^(α→β)  { ((β^m =α^n )),((α^m =β^n )) :}  (α,β) is a solution, then (β,α) is also a solution
$$\begin{cases}{\alpha^{{m}} =\beta^{{n}} }\\{\beta^{{m}} =\alpha^{{n}} }\end{cases}\underset{\beta\rightarrow\alpha} {\overset{\alpha\rightarrow\beta} {\Rightarrow}}\begin{cases}{\beta^{{m}} =\alpha^{{n}} }\\{\alpha^{{m}} =\beta^{{n}} }\end{cases} \\ $$$$\left(\alpha,\beta\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution},\:\mathrm{then}\:\left(\beta,\alpha\right)\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{solution} \\ $$
Commented by Rasheed Ahmad last updated on 15/Aug/15
Good deduction!
$$\mathrm{Good}\:\mathrm{deduction}! \\ $$
Commented by 123456 last updated on 15/Aug/15
(n,m)∈(N^∗ )^2 ,p≤max(rn,rm)+1  k=lcm(n,m)   { ((α^n =β^m )),((β^n =α^m )) :}⇒ { ((α^(nk_1 ) =β^(mk_1 ) )),((β^(nk_2 ) =α^(mk_2 ) )) :}  mk_1 =nk_2 =k  α^(nk_1 ) −α^(mk_2 ) =0⇒α^r_1  (α^(r_2 −r_1 ) −1)=0  r_1 =min(nk_1 ,mk_2 ),r_2 =max(nk_1 ,mk_2 )  α^r_1  =0∨α^r =1  r=r_2 −r_1
$$\left({n},{m}\right)\in\left(\mathbb{N}^{\ast} \right)^{\mathrm{2}} ,{p}\leqslant\mathrm{max}\left({rn},{rm}\right)+\mathrm{1} \\ $$$${k}=\mathrm{lcm}\left({n},{m}\right) \\ $$$$\begin{cases}{\alpha^{{n}} =\beta^{{m}} }\\{\beta^{{n}} =\alpha^{{m}} }\end{cases}\Rightarrow\begin{cases}{\alpha^{{nk}_{\mathrm{1}} } =\beta^{{mk}_{\mathrm{1}} } }\\{\beta^{{nk}_{\mathrm{2}} } =\alpha^{{mk}_{\mathrm{2}} } }\end{cases} \\ $$$${mk}_{\mathrm{1}} ={nk}_{\mathrm{2}} ={k} \\ $$$$\alpha^{{nk}_{\mathrm{1}} } −\alpha^{{mk}_{\mathrm{2}} } =\mathrm{0}\Rightarrow\alpha^{{r}_{\mathrm{1}} } \left(\alpha^{{r}_{\mathrm{2}} −{r}_{\mathrm{1}} } −\mathrm{1}\right)=\mathrm{0} \\ $$$${r}_{\mathrm{1}} =\mathrm{min}\left({nk}_{\mathrm{1}} ,{mk}_{\mathrm{2}} \right),{r}_{\mathrm{2}} =\mathrm{max}\left({nk}_{\mathrm{1}} ,{mk}_{\mathrm{2}} \right) \\ $$$$\alpha^{{r}_{\mathrm{1}} } =\mathrm{0}\vee\alpha^{{r}} =\mathrm{1} \\ $$$${r}={r}_{\mathrm{2}} −{r}_{\mathrm{1}} \\ $$
Commented by Rasheed Soomro last updated on 15/Aug/15
I have used your this result in my answer to Q 1497
$${I}\:{have}\:{used}\:{your}\:{this}\:{result}\:{in}\:{my}\:{answer}\:{to}\:{Q}\:\mathrm{1497} \\ $$
Answered by Rasheed Soomro last updated on 17/Aug/15
     Let gcd(m,n)=k ⇒  lcm(m,n)=((mn)/k)  α^m =β^( n)  ⇒( α^m )^(m/k) =(β^( n) )^(m/k) ⇒ α^(m^2 /k) =β^((mn)/k)          (I)  β^( m) =α^( n)  ⇒ (β^( m) )^(n/k) = (α^n )^(n/k) ⇒ β^((mn)/k) =α^(n^2 /k)          (II)  Our goal is to achieve β ′s  common exponent    ( of course  least common exponent (((mn)/k) ) is  suitable for simplified solution)      in order to eliminate β   in above steps.    From (I) and (II)              α^(m^2 /k) = α^(n^2 /k)    As m and n are exchangeable here we may assume m≥n   (If n>m then it will be  merely matter of exchanging symbols)                α^(m^2 /k) − α^(n^2 /k)  =0 ⇒ α^(n^2 /k) ( α^((m^2 /k) − (n^2 /k)) − 1)=0       ⇒ α^(n^2 /k) = 0 ∨ α^((m^2 − n^2 )/k) =1       ⇒ α=0  ∨ α=^((m^2  − n^2 )/k) (√( 1))    (α is (((m^2  − n^2 )/k))th root of unity)  α=0 ⇒β=0    [ No need to show process ]      ∴      α is (((m^2  − n^2 )/k))th root of unity.  Similarly it can be shown that,                 β  is also  (((m^2  − n^2 )/k))th root of unity.     nth roots of unity are given by:           ( cos ((2π)/n) +ı sin ((2π)/n)  )^j      j=0,1,2,....,n−1  Hence,         (((m^2  − n^2 )/k)) th roots of unity will be:       ( cos ((2πk)/(m^2 −n^2 )) +ı sin ((2πk)/(m^2 −n^2 )) )^j        j=0,1,2,...(.((m^2  − n^2 )/k) −1)        Let  cos ((2πk)/(m^2 −n^2 )) +ı sin ((2πk)/(m^2 −n^2 ))    =ω  (((m^2  − n^2 )/k)) th roots of unity=1,ω,ω^2 ,......,ω^((m^2 − n^2 −k)/k)   [ Let ((m^2 −n^2 )/k) = N ]  mth power of    ∽   =1, ω^( m(mod N)) ,ω^( 2m(mod N)) ,...ω^( m(N−1)(mod N))   nth power of     ∽    =1, ω^( n(mod N)) ,ω^( 2n(mod N)) ,...ω^( n(N−1)(mod N))   Let  j_1  , j_2 =0,1,2,...(.((m^2  − n^2 )/k) −1)  Let α = ω^( j_1 )   and β =  ω^( j_2 )   are two Nth roots such that    α^m =β^( n) ⇒   ω^( mj_1 (mod N)) =ω^( nj_2 (mod N)) ⇒mj_1 (mod N)=nj_2 (mod N)     α^n =β^( m)  ⇒   ω^( nj_1 (mod N)) =ω^( mj_2 (mod N)) ⇒nj_1 (mod N)=mj_2 (mod N)  Therefore   −−−−−−−−−−−−−−−−−−−−−−−−−  For           mj_1 (mod ((m^2 −n^2 )/k) )=nj_2 (mod ((m^2 −n^2 )/k) )    and            nj_1 (mod ((m^2 −n^2 )/k) )=mj_2 (mod ((m^2 −n^2 )/k) )                       ( α, β)=(ω^j_1  , ω^j_2  )=(ω^j_2   , ω^j_1  )   where  ω  is  (((m^2  − n^2 )/k)) th root of unity( with m≥n).
$$\:\:\:\:\:\mathrm{Let}\:\mathrm{gcd}\left(\mathrm{m},{n}\right)=\mathrm{k}\:\Rightarrow\:\:\mathrm{lcm}\left(\mathrm{m},{n}\right)=\frac{\mathrm{mn}}{\mathrm{k}} \\ $$$$\alpha^{{m}} =\beta^{\:{n}} \:\Rightarrow\left(\:\alpha^{{m}} \right)^{\frac{\mathrm{m}}{\mathrm{k}}} =\left(\beta^{\:\mathrm{n}} \right)^{\frac{\mathrm{m}}{\mathrm{k}}} \Rightarrow\:\alpha^{\frac{\mathrm{m}^{\mathrm{2}} }{\mathrm{k}}} =\beta^{\frac{\mathrm{mn}}{\mathrm{k}}} \:\:\:\:\:\:\:\:\:\left(\mathrm{I}\right) \\ $$$$\beta^{\:\mathrm{m}} =\alpha^{\:\mathrm{n}} \:\Rightarrow\:\left(\beta^{\:\mathrm{m}} \right)^{\frac{\mathrm{n}}{\mathrm{k}}} =\:\left(\alpha^{\mathrm{n}} \right)^{\frac{\mathrm{n}}{\mathrm{k}}} \Rightarrow\:\beta^{\frac{\mathrm{mn}}{\mathrm{k}}} =\alpha^{\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} \:\:\:\:\:\:\:\:\:\left(\mathrm{II}\right) \\ $$$$\mathrm{Our}\:\mathrm{goal}\:\mathrm{is}\:\mathrm{to}\:\mathrm{achieve}\:\beta\:'\mathrm{s}\:\:\mathrm{common}\:\mathrm{exponent}\: \\ $$$$\:\left(\:\mathrm{of}\:\mathrm{course}\:\:\mathrm{least}\:\mathrm{common}\:\mathrm{exponent}\:\left(\frac{\mathrm{mn}}{\mathrm{k}}\:\right)\:\mathrm{is}\:\:\mathrm{suitable}\:\mathrm{for}\:\mathrm{simplified}\:\mathrm{solution}\right)\: \\ $$$$\:\:\:\mathrm{in}\:\mathrm{order}\:\mathrm{to}\:\mathrm{eliminate}\:\beta\:\:\:\mathrm{in}\:\mathrm{above}\:\mathrm{steps}. \\ $$$$ \\ $$$$\mathrm{From}\:\left(\mathrm{I}\right)\:\mathrm{and}\:\left(\mathrm{II}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\alpha^{\frac{\mathrm{m}^{\mathrm{2}} }{\mathrm{k}}} =\:\alpha^{\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} \: \\ $$$$\mathrm{As}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{are}\:\mathrm{exchangeable}\:\mathrm{here}\:\mathrm{we}\:\mathrm{may}\:\mathrm{assume}\:\mathrm{m}\geqslant{n}\: \\ $$$$\left(\mathrm{If}\:\mathrm{n}>\mathrm{m}\:\mathrm{then}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:\:\mathrm{merely}\:\mathrm{matter}\:\mathrm{of}\:\mathrm{exchanging}\:\mathrm{symbols}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha^{\frac{\mathrm{m}^{\mathrm{2}} }{\mathrm{k}}} −\:\alpha^{\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} \:=\mathrm{0}\:\Rightarrow\:\alpha^{\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} \left(\:\alpha^{\frac{\mathrm{m}^{\mathrm{2}} }{\mathrm{k}}\:−\:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} −\:\mathrm{1}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\Rightarrow\:\alpha^{\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} =\:\mathrm{0}\:\vee\:\alpha^{\frac{\mathrm{m}^{\mathrm{2}} −\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} =\mathrm{1} \\ $$$$\:\:\:\:\:\Rightarrow\:\alpha=\mathrm{0}\:\:\vee\:\alpha=^{\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}} \sqrt{\:\mathrm{1}}\:\:\:\:\left(\alpha\:\mathrm{is}\:\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\mathrm{th}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\right) \\ $$$$\alpha=\mathrm{0}\:\Rightarrow\beta=\mathrm{0}\:\:\:\:\left[\:\mathrm{No}\:\mathrm{need}\:\mathrm{to}\:\mathrm{show}\:\mathrm{process}\:\right] \\ $$$$\:\:\:\:\therefore\:\:\:\:\:\:\alpha\:\mathrm{is}\:\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\mathrm{th}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}. \\ $$$$\mathrm{Similarly}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{shown}\:\mathrm{that}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\beta\:\:\mathrm{is}\:\mathrm{also}\:\:\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\mathrm{th}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}. \\ $$$$\:\:\:\mathrm{nth}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{are}\:\mathrm{given}\:\mathrm{by}:\: \\ $$$$\:\:\:\:\:\:\:\:\left(\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{n}}\:+\imath\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{n}}\:\:\right)^{\mathrm{j}} \:\:\:\:\:\mathrm{j}=\mathrm{0},\mathrm{1},\mathrm{2},….,\mathrm{n}−\mathrm{1} \\ $$$$\mathrm{Hence}, \\ $$$$\:\:\:\:\:\:\:\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\:{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{will}\:\mathrm{be}: \\ $$$$\:\:\:\:\:\left(\:\mathrm{cos}\:\frac{\mathrm{2}\pi\mathrm{k}}{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }\:+\imath\:\mathrm{sin}\:\frac{\mathrm{2}\pi\mathrm{k}}{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }\:\right)^{\mathrm{j}} \:\:\:\:\:\:\:\mathrm{j}=\mathrm{0},\mathrm{1},\mathrm{2},…\left(.\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\mathrm{Let}\:\:\mathrm{cos}\:\frac{\mathrm{2}\pi\mathrm{k}}{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }\:+\imath\:\mathrm{sin}\:\frac{\mathrm{2}\pi\mathrm{k}}{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }\:\:\:\:=\omega \\ $$$$\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\:{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}=\mathrm{1},\omega,\omega^{\mathrm{2}} ,……,\omega^{\frac{{m}^{\mathrm{2}} −\:\mathrm{n}^{\mathrm{2}} −\mathrm{k}}{\mathrm{k}}} \\ $$$$\left[\:\mathrm{Let}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:=\:\mathrm{N}\:\right] \\ $$$$\mathrm{m}{th}\:\mathrm{power}\:\mathrm{of}\:\:\:\:\backsim\:\:\:=\mathrm{1},\:\omega^{\:\mathrm{m}\left(\mathrm{mod}\:\mathrm{N}\right)} ,\omega^{\:\mathrm{2m}\left(\mathrm{mod}\:\mathrm{N}\right)} ,…\omega^{\:\mathrm{m}\left(\mathrm{N}−\mathrm{1}\right)\left(\mathrm{mod}\:\mathrm{N}\right)} \\ $$$$\mathrm{n}{th}\:\mathrm{power}\:\mathrm{of}\:\:\:\:\:\backsim\:\:\:\:=\mathrm{1},\:\omega^{\:\mathrm{n}\left(\mathrm{mod}\:\mathrm{N}\right)} ,\omega^{\:\mathrm{2n}\left(\mathrm{mod}\:\mathrm{N}\right)} ,…\omega^{\:\mathrm{n}\left(\mathrm{N}−\mathrm{1}\right)\left(\mathrm{mod}\:\mathrm{N}\right)} \\ $$$$\mathrm{Let}\:\:\mathrm{j}_{\mathrm{1}} \:,\:\mathrm{j}_{\mathrm{2}} =\mathrm{0},\mathrm{1},\mathrm{2},…\left(.\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:−\mathrm{1}\right) \\ $$$$\mathrm{Let}\:\alpha\:=\:\omega^{\:{j}_{\mathrm{1}} } \:\:\mathrm{and}\:\beta\:=\:\:\omega^{\:\mathrm{j}_{\mathrm{2}} } \:\:\mathrm{are}\:\mathrm{two}\:\mathrm{N}{th}\:\mathrm{roots}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\alpha^{\mathrm{m}} =\beta^{\:\mathrm{n}} \Rightarrow\:\:\:\omega^{\:\mathrm{mj}_{\mathrm{1}} \left(\mathrm{mod}\:\mathrm{N}\right)} =\omega^{\:\mathrm{nj}_{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{N}\right)} \Rightarrow\mathrm{mj}_{\mathrm{1}} \left(\mathrm{mod}\:\mathrm{N}\right)=\mathrm{nj}_{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{N}\right) \\ $$$$\:\:\:\alpha^{\mathrm{n}} =\beta^{\:\mathrm{m}} \:\Rightarrow\:\:\:\omega^{\:\mathrm{nj}_{\mathrm{1}} \left(\mathrm{mod}\:\mathrm{N}\right)} =\omega^{\:\mathrm{mj}_{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{N}\right)} \Rightarrow\mathrm{nj}_{\mathrm{1}} \left(\mathrm{mod}\:\mathrm{N}\right)=\mathrm{mj}_{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{N}\right) \\ $$$$\mathrm{Therefore}\: \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$$\mathrm{For}\:\:\:\:\:\:\:\:\:\:\:\mathrm{mj}_{\mathrm{1}} \left(\mathrm{mod}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:\right)=\mathrm{nj}_{\mathrm{2}} \left(\mathrm{mod}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:\right)\: \\ $$$$\:\mathrm{and}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{nj}_{\mathrm{1}} \left(\mathrm{mod}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:\right)=\mathrm{mj}_{\mathrm{2}} \left(\mathrm{mod}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\alpha,\:\beta\right)=\left(\omega^{\mathrm{j}_{\mathrm{1}} } ,\:\omega^{\mathrm{j}_{\mathrm{2}} } \right)=\left(\omega^{\mathrm{j}_{\mathrm{2}} } \:,\:\omega^{\mathrm{j}_{\mathrm{1}} } \right) \\ $$$$\:\mathrm{where}\:\:\omega\:\:\mathrm{is}\:\:\left(\frac{\mathrm{m}^{\mathrm{2}} \:−\:\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right)\:{th}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\left(\:\mathrm{with}\:\mathrm{m}\geqslant\mathrm{n}\right). \\ $$
Answered by Rasheed Soomro last updated on 17/Aug/15
Formula for number of pairs (𝛂,𝛃) fulfilling the conditions  given in the question.  ((m^2 −n^2 +k)/k)  Since the number of   (((m^2 −n^2 )/k))th roots is ((m^2 −n^2 )/k)  and any one of them may be the value of α and to every α one  value of β  is attached.  Hence number of (α,β) pairs is  ((m^2 −n^2 )/k) . But (0,0) also satisfy the  conditions (and this is not included in the roots)   So   ((m^2 −n^2 )/k)+1=((m^2 −n^2 +k)/k) .Remember that k=gcd(m,n) and  m≥n.
$$\boldsymbol{\mathrm{Formula}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{pairs}}\:\left(\boldsymbol{\alpha},\boldsymbol{\beta}\right)\:\boldsymbol{\mathrm{fulfilling}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{conditions}} \\ $$$$\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{question}}. \\ $$$$\frac{\boldsymbol{\mathrm{m}}^{\mathrm{2}} −\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{k}}}{\boldsymbol{\mathrm{k}}} \\ $$$$\boldsymbol{\mathrm{S}}\mathrm{ince}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\:\:\left(\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\right){th}\:\mathrm{roots}\:\mathrm{is}\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}} \\ $$$$\mathrm{and}\:\mathrm{any}\:\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\mathrm{may}\:\mathrm{be}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\alpha\:\mathrm{and}\:\mathrm{to}\:\mathrm{every}\:\alpha\:\mathrm{one} \\ $$$$\mathrm{value}\:\mathrm{of}\:\beta\:\:\mathrm{is}\:\mathrm{attached}. \\ $$$$\mathrm{Hence}\:\mathrm{number}\:\mathrm{of}\:\left(\alpha,\beta\right)\:\mathrm{pairs}\:\mathrm{is}\:\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}\:.\:\mathrm{But}\:\left(\mathrm{0},\mathrm{0}\right)\:\mathrm{also}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{conditions}\:\left(\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{included}\:\mathrm{in}\:\mathrm{the}\:\mathrm{roots}\right)\: \\ $$$$\mathrm{So}\:\:\:\frac{\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} }{\mathrm{k}}+\mathrm{1}=\frac{\boldsymbol{\mathrm{m}}^{\mathrm{2}} −\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{k}}}{\boldsymbol{\mathrm{k}}}\:.\mathrm{Remember}\:\mathrm{that}\:\mathrm{k}=\mathrm{gcd}\left(\mathrm{m},\mathrm{n}\right)\:\mathrm{and} \\ $$$$\mathrm{m}\geqslant\mathrm{n}. \\ $$
Commented by Rasheed Soomro last updated on 20/Aug/15
Who did like? Suppose liking by abc is more important  for me then I would like to know about liker′s  ID.  So liking should be recorded with ID.  PL demand for this.    Of course Likers′  ID′s  shouldn′t be there for full  time but when we click.......We must know, ′′ Who  did like? ′′
$$\boldsymbol{{Who}}\:\boldsymbol{{did}}\:\boldsymbol{{like}}?\:\boldsymbol{{Suppose}}\:\boldsymbol{{liking}}\:\boldsymbol{{by}}\:\boldsymbol{{abc}}\:\boldsymbol{{is}}\:\boldsymbol{{more}}\:\boldsymbol{{important}} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{me}}\:\boldsymbol{{then}}\:\boldsymbol{{I}}\:\boldsymbol{{would}}\:\boldsymbol{{like}}\:\boldsymbol{{to}}\:\boldsymbol{{know}}\:\boldsymbol{{about}}\:\boldsymbol{{liker}}'\boldsymbol{{s}}\:\:\boldsymbol{{ID}}. \\ $$$$\boldsymbol{{So}}\:\boldsymbol{{liking}}\:\boldsymbol{{should}}\:\boldsymbol{{be}}\:\boldsymbol{{recorded}}\:\boldsymbol{{with}}\:\boldsymbol{{ID}}. \\ $$$$\boldsymbol{\mathrm{PL}}\:\boldsymbol{\mathrm{demand}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}. \\ $$$$ \\ $$$$\boldsymbol{{Of}}\:\boldsymbol{{course}}\:\boldsymbol{{Likers}}'\:\:\boldsymbol{{ID}}'\boldsymbol{{s}}\:\:\boldsymbol{{shouldn}}'\boldsymbol{{t}}\:\boldsymbol{{be}}\:\boldsymbol{{there}}\:\boldsymbol{{for}}\:\boldsymbol{{full}} \\ $$$$\boldsymbol{{time}}\:\boldsymbol{{but}}\:\boldsymbol{{when}}\:\boldsymbol{{we}}\:\boldsymbol{{click}}…….\boldsymbol{{We}}\:\boldsymbol{{must}}\:\boldsymbol{{know}},\:''\:\boldsymbol{{Who}} \\ $$$$\boldsymbol{{did}}\:\boldsymbol{{like}}?\:'' \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *