Menu Close

Find-det-A-where-A-is-an-n-n-matrix-of-the-form-A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-




Question Number 3965 by Yozzii last updated on 25/Dec/15
Find det(A) where A is an n×n matrix  of the form   A= ((λ,1,1,…,…,…,…,1),(1,λ,1,…,…,…,…,1),(1,1,λ,…,…,…,…,1),(⋮,⋮,⋮,⋱,…,…,…,1),(⋮,⋮,⋮,⋮,⋱,…,…,1),(⋮,⋮,⋮,⋮,⋮,⋱,…,1),(⋮,⋮,⋮,⋮,⋮,⋮,⋱,1),(1,1,1,1,1,1,1,λ) )  λ=constant for leading diagonal elements  1s for all other elements.
Finddet(A)whereAisann×nmatrixoftheformA=(λ1111λ1111λ111111111111λ)λ=constantforleadingdiagonalelements1sforallotherelements.
Commented by 123456 last updated on 25/Dec/15
(λ+1)^2 −1=λ^2 +2λ+1−1=λ(λ+2)  λ+1−1=λ  (λ+2)^2 −1=λ^2 +4λ−4−1=λ^2 −4λ−5  ⋮
(λ+1)21=λ2+2λ+11=λ(λ+2)λ+11=λ(λ+2)21=λ2+4λ41=λ24λ5
Answered by 123456 last updated on 25/Dec/15
A= determinant ((λ,1,1,…,1),(1,λ,1,…,1),(1,1,λ,…,1),(⋮,⋮,⋮,⋱,1),(1,1,1,1,λ))  A=(1/λ^(n−1) ) determinant ((λ,1,1,…,1),(λ,λ^2 ,λ,…,λ),(λ,λ,λ^2 ,…,λ),(⋮,⋮,⋮,⋱,λ),(λ,λ,λ,λ,λ^2 ))  A=(1/λ^(n−1) ) determinant ((λ,1,1,…,1),(0,(λ^2 −1),(λ−1),…,(λ−1)),(0,(λ−1),(λ^2 −1),…,(λ−1)),(⋮,⋮,⋮,⋱,(λ−1)),(0,(λ−1),(λ−1),(λ−1),(λ^2 −1)))  A=(((λ−1)/λ))^(n−1)  determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,1,(λ+1),…,1),(⋮,⋮,⋮,⋱,1),(0,1,1,1,(λ+1)))  A=(((λ−1)/λ))^(n−1) (1/((λ+1)^(n−2) )) determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,(λ+1),((λ+1)^2 ),…,(λ+1)),(⋮,⋮,⋮,⋱,(λ+1)),(0,(λ+1),(λ+1),(λ+1),((λ+1)^2 )))  A=(((λ−1)/λ))^(n−1) (1/((λ+1)^(n−2) )) determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,0,(λ(λ+2)),…,λ),(⋮,⋮,⋮,⋱,λ),(0,0,λ,λ,(λ(λ+2))))  A=(((λ−1)/λ))^(n−1) (λ/((λ+1)^(n−2) )) determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,0,(λ+2),…,1),(⋮,⋮,⋮,⋱,1),(0,0,1,1,(λ+2)))  continue
A=|λ1111λ1111λ111111λ|A=1λn1|λ111λλ2λλλλλ2λλλλλλλ2|A=1λn1|λ1110λ21λ1λ10λ1λ21λ1λ10λ1λ1λ1λ21|A=(λ1λ)n1|λ1110λ+11101λ+1110111λ+1|A=(λ1λ)n11(λ+1)n2|λ1110λ+1110λ+1(λ+1)2λ+1λ+10λ+1λ+1λ+1(λ+1)2|A=(λ1λ)n11(λ+1)n2|λ1110λ+11100λ(λ+2)λλ00λλλ(λ+2)|A=(λ1λ)n1λ(λ+1)n2|λ1110λ+11100λ+2110011λ+2|continue
Commented by prakash jain last updated on 25/Dec/15
From the line in above  A=(((λ−1)/λ))^(n−1)  determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,1,(λ+1),…,1),(⋮,⋮,⋮,⋱,1),(0,1,1,1,(λ+1)))  Let us say D(λ,n) is the determinant.  D(λ,n)=(((λ−1)^(n−1) )/λ^(n−2) )D(λ+1,n−1)  D(λ,2)=λ^2 −1=(λ−1)(λ+1)  D(λ,3)=(((λ−1)^2 )/λ)D(λ+1,2)=(((λ−1)^2 )/λ)[(λ+1)^2 −1]  =(λ−1)^2 (λ+2)  D(λ,4)=(((λ−1)^3 )/λ^2 )λ^2 (λ+3)=(λ−1)^3 (λ+3)  D(λ,n)=(λ−1)^(n−1) (λ+n−1)
FromthelineinaboveA=(λ1λ)n1|λ1110λ+11101λ+1110111λ+1|LetussayD(λ,n)isthedeterminant.D(λ,n)=(λ1)n1λn2D(λ+1,n1)D(λ,2)=λ21=(λ1)(λ+1)D(λ,3)=(λ1)2λD(λ+1,2)=(λ1)2λ[(λ+1)21]=(λ1)2(λ+2)D(λ,4)=(λ1)3λ2λ2(λ+3)=(λ1)3(λ+3)D(λ,n)=(λ1)n1(λ+n1)
Commented by Yozzii last updated on 25/Dec/15
It should be D(λ,n)=(λ−1)^(n−1) (λ+n−1) ?
ItshouldbeD(λ,n)=(λ1)n1(λ+n1)?
Commented by prakash jain last updated on 25/Dec/15
yes. corrected.
yes.corrected.
Answered by Yozzii last updated on 26/Dec/15
Perhaps some sort of recursive   formula for ∣A_n ∣ could be found?   n=2: A_2 = ((λ,1),(1,λ) )⇒∣A_2 ∣=λ^2 −1  n=3: A_3 = ((λ,1,1),(1,λ,1),(1,1,λ) )  ⇒∣A_3 ∣=λ determinant ((λ,1),(1,λ))− determinant ((1,1),(1,λ))+ determinant ((1,λ),(1,1))  Now, − determinant ((1,1),(1,λ))= determinant ((1,λ),(1,1))  and  determinant ((λ,1),(1,λ))=∣A_2 ∣.  ∴ ∣A_3 ∣=λ∣A_2 ∣−2 determinant ((1,1),(1,λ))  ∣A_3 ∣=λ∣A_2 ∣−2(λ−1)  ∣A_3 ∣=λ(λ^2 −1)−2(λ−1)=(λ−1)(λ^2 +λ−2)  n=4:A_4 = ((λ,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ) )  ∣A_4 ∣=λ determinant ((λ,1,1),(1,λ,1),(1,1,λ))− determinant ((1,1,1),(1,λ,1),(1,1,λ))+ determinant ((1,λ,1),(1,1,1),(1,1,λ))− determinant ((1,λ,1),(1,1,λ),(1,1,1))  Also,  determinant ((1,λ,1),(1,1,1),(1,1,λ))=− determinant ((1,1,1),(1,λ,1),(1,1,λ))=− determinant ((1,λ,1),(1,1,λ),(1,1,1))  and A_3 = determinant ((λ,1,1),(1,λ,1),(1,1,λ)).   determinant ((1,1,1),(1,λ,1),(1,1,λ))=1×(λ−1)(λ+1)−2(λ−1)  =(λ−1)(λ+1−1−1)  =(λ−1)^2   ∴∣A_4 ∣=λ∣A_3 ∣−3 determinant ((1,1,1),(1,λ,1),(1,1,λ))  ∣A_4 ∣=λ∣A_3 ∣−3(λ−1)^2     n=5: A_5 = ((λ,1,1,1,1),(1,λ,1,1,1),(1,1,λ,1,1),(1,1,1,λ,1),(1,1,1,1,λ) )  ∣A_5 ∣=λ∣A_4 ∣− determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ))+ determinant ((1,λ,1,1),(1,1,1,1),(1,1,λ,1),(1,1,1,λ))− determinant ((1,λ,1,1),(1,1,λ,1),(1,1,1,1),(1,1,1,λ))+ determinant ((1,λ,1,1),(1,1,λ,1),(1,1,1,λ),(1,1,1,1))  It can be shown that ∣A_5 ∣=λ∣A_4 ∣−4 determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ)).   determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ))=1×∣A_3 ∣−3 determinant ((1,1,1),(1,λ,1),(1,1,λ))                            =(λ−1)[(λ^2 −2λ+1)]                            =(λ−1)^3   ∴∣A_5 ∣=λ∣A_4 ∣−4(λ−1)^3 .  I conject that ∣A_(n+1) ∣=λ∣A_n ∣−n(λ−1)^(n−1)   (n≥2)  A_2 =λ^2 −1.     This is like u_(n+1) =λu_n −n(λ−1)^(n−1)  (n≥2).    From Mr. Jain′s contribution,  ∣A_n ∣=(λ−1)^(n−1) (λ+n−1)=D(λ,n)  By my recurrence relation,  ∣A_(n+1) ∣=λ(λ−1)^(n−1) (λ+n−1)−n(λ−1)^(n−1)   ∣A_(n+1) ∣=(λ−1)^(n−1) (λ^2 +(n−1)λ−n)  ∣A_(n+1) ∣=(λ−1)^(n−1) (λ(λ−1)+n(λ−1))  ∣A_(n+1) ∣=(λ−1)^n (λ+n)=D(λ,n+1)
PerhapssomesortofrecursiveformulaforAncouldbefound?n=2:A2=(λ11λ)⇒∣A2∣=λ21n=3:A3=(λ111λ111λ)⇒∣A3∣=λ|λ11λ||111λ|+|1λ11|Now,|111λ|=|1λ11|and|λ11λ|=∣A2.A3∣=λA22|111λ|A3∣=λA22(λ1)A3∣=λ(λ21)2(λ1)=(λ1)(λ2+λ2)n=4:A4=(λ1111λ1111λ1111λ)A4∣=λ|λ111λ111λ||1111λ111λ|+|1λ111111λ||1λ111λ111|Also,|1λ111111λ|=|1111λ111λ|=|1λ111λ111|andA3=|λ111λ111λ|.|1111λ111λ|=1×(λ1)(λ+1)2(λ1)=(λ1)(λ+111)=(λ1)2∴∣A4∣=λA33|1111λ111λ|A4∣=λA33(λ1)2n=5:A5=(λ11111λ11111λ11111λ11111λ)A5∣=λA4|11111λ1111λ1111λ|+|1λ11111111λ1111λ||1λ1111λ11111111λ|+|1λ1111λ1111λ1111|ItcanbeshownthatA5∣=λA44|11111λ1111λ1111λ|.|11111λ1111λ1111λ|=1×A33|1111λ111λ|=(λ1)[(λ22λ+1)]=(λ1)3∴∣A5∣=λA44(λ1)3.IconjectthatAn+1∣=λAnn(λ1)n1(n2)A2=λ21.Thisislikeun+1=λunn(λ1)n1(n2).FromMr.Jainscontribution,An∣=(λ1)n1(λ+n1)=D(λ,n)Bymyrecurrencerelation,An+1∣=λ(λ1)n1(λ+n1)n(λ1)n1An+1∣=(λ1)n1(λ2+(n1)λn)An+1∣=(λ1)n1(λ(λ1)+n(λ1))An+1∣=(λ1)n(λ+n)=D(λ,n+1)
Commented by Yozzii last updated on 26/Dec/15
I had hoped of solving the recursive  formula for ∣A_n ∣...Generating function?
IhadhopedofsolvingtherecursiveformulaforAnGeneratingfunction?

Leave a Reply

Your email address will not be published. Required fields are marked *