Question Number 3965 by Yozzii last updated on 25/Dec/15

Commented by 123456 last updated on 25/Dec/15

Answered by 123456 last updated on 25/Dec/15

Commented by prakash jain last updated on 25/Dec/15
![From the line in above A=(((λ−1)/λ))^(n−1) determinant ((λ,1,1,…,1),(0,(λ+1),1,…,1),(0,1,(λ+1),…,1),(⋮,⋮,⋮,⋱,1),(0,1,1,1,(λ+1))) Let us say D(λ,n) is the determinant. D(λ,n)=(((λ−1)^(n−1) )/λ^(n−2) )D(λ+1,n−1) D(λ,2)=λ^2 −1=(λ−1)(λ+1) D(λ,3)=(((λ−1)^2 )/λ)D(λ+1,2)=(((λ−1)^2 )/λ)[(λ+1)^2 −1] =(λ−1)^2 (λ+2) D(λ,4)=(((λ−1)^3 )/λ^2 )λ^2 (λ+3)=(λ−1)^3 (λ+3) D(λ,n)=(λ−1)^(n−1) (λ+n−1)](https://www.tinkutara.com/question/Q3968.png)
Commented by Yozzii last updated on 25/Dec/15

Commented by prakash jain last updated on 25/Dec/15

Answered by Yozzii last updated on 26/Dec/15
![Perhaps some sort of recursive formula for ∣A_n ∣ could be found? n=2: A_2 = ((λ,1),(1,λ) )⇒∣A_2 ∣=λ^2 −1 n=3: A_3 = ((λ,1,1),(1,λ,1),(1,1,λ) ) ⇒∣A_3 ∣=λ determinant ((λ,1),(1,λ))− determinant ((1,1),(1,λ))+ determinant ((1,λ),(1,1)) Now, − determinant ((1,1),(1,λ))= determinant ((1,λ),(1,1)) and determinant ((λ,1),(1,λ))=∣A_2 ∣. ∴ ∣A_3 ∣=λ∣A_2 ∣−2 determinant ((1,1),(1,λ)) ∣A_3 ∣=λ∣A_2 ∣−2(λ−1) ∣A_3 ∣=λ(λ^2 −1)−2(λ−1)=(λ−1)(λ^2 +λ−2) n=4:A_4 = ((λ,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ) ) ∣A_4 ∣=λ determinant ((λ,1,1),(1,λ,1),(1,1,λ))− determinant ((1,1,1),(1,λ,1),(1,1,λ))+ determinant ((1,λ,1),(1,1,1),(1,1,λ))− determinant ((1,λ,1),(1,1,λ),(1,1,1)) Also, determinant ((1,λ,1),(1,1,1),(1,1,λ))=− determinant ((1,1,1),(1,λ,1),(1,1,λ))=− determinant ((1,λ,1),(1,1,λ),(1,1,1)) and A_3 = determinant ((λ,1,1),(1,λ,1),(1,1,λ)). determinant ((1,1,1),(1,λ,1),(1,1,λ))=1×(λ−1)(λ+1)−2(λ−1) =(λ−1)(λ+1−1−1) =(λ−1)^2 ∴∣A_4 ∣=λ∣A_3 ∣−3 determinant ((1,1,1),(1,λ,1),(1,1,λ)) ∣A_4 ∣=λ∣A_3 ∣−3(λ−1)^2 n=5: A_5 = ((λ,1,1,1,1),(1,λ,1,1,1),(1,1,λ,1,1),(1,1,1,λ,1),(1,1,1,1,λ) ) ∣A_5 ∣=λ∣A_4 ∣− determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ))+ determinant ((1,λ,1,1),(1,1,1,1),(1,1,λ,1),(1,1,1,λ))− determinant ((1,λ,1,1),(1,1,λ,1),(1,1,1,1),(1,1,1,λ))+ determinant ((1,λ,1,1),(1,1,λ,1),(1,1,1,λ),(1,1,1,1)) It can be shown that ∣A_5 ∣=λ∣A_4 ∣−4 determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ)). determinant ((1,1,1,1),(1,λ,1,1),(1,1,λ,1),(1,1,1,λ))=1×∣A_3 ∣−3 determinant ((1,1,1),(1,λ,1),(1,1,λ)) =(λ−1)[(λ^2 −2λ+1)] =(λ−1)^3 ∴∣A_5 ∣=λ∣A_4 ∣−4(λ−1)^3 . I conject that ∣A_(n+1) ∣=λ∣A_n ∣−n(λ−1)^(n−1) (n≥2) A_2 =λ^2 −1. This is like u_(n+1) =λu_n −n(λ−1)^(n−1) (n≥2). From Mr. Jain′s contribution, ∣A_n ∣=(λ−1)^(n−1) (λ+n−1)=D(λ,n) By my recurrence relation, ∣A_(n+1) ∣=λ(λ−1)^(n−1) (λ+n−1)−n(λ−1)^(n−1) ∣A_(n+1) ∣=(λ−1)^(n−1) (λ^2 +(n−1)λ−n) ∣A_(n+1) ∣=(λ−1)^(n−1) (λ(λ−1)+n(λ−1)) ∣A_(n+1) ∣=(λ−1)^n (λ+n)=D(λ,n+1)](https://www.tinkutara.com/question/Q3970.png)
Commented by Yozzii last updated on 26/Dec/15
