Menu Close

find-dx-a-cosx-with-a-gt-0-




Question Number 68868 by mathmax by abdo last updated on 16/Sep/19
find ∫    (dx/(a+cosx))  with a>0
$${find}\:\int\:\:\:\:\frac{{dx}}{{a}+{cosx}}\:\:{with}\:{a}>\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 17/Sep/19
let I = ∫  (dx/(a+cosx)) changement tan((x/2))=t give  I =∫   (1/(a+((1−t^2 )/(1+t^2 ))))((2dt)/(1+t^2 )) =∫     ((2dt)/(a+at^2 +1−t^2 )) =∫  ((2dt)/((a−1)t^2  +a+1))  =(2/(a−1)) ∫  (dt/(t^2  +((a+1)/(a−1))))    case 1    0<a<1 ⇒I =(2/(a−1))∫  (dt/(t^2 −((1+a)/(1−a))))  =(2/(a−1)) ∫   (dt/(t^2 −((√((1+a)/(1−a))))^2 )) =_(t=(√((1+a)/(1−a)))u)     (2/(a−1))((1−a)/(1+a)) ∫   (1/(u^2 −1))(√((1+a)/(1−a)))du  =(2/(1+a))×((√(1+a))/( (√(1−a)))) ∫((1/(u−1))−(1/(u+1)))du =(1/( (√(1−a^2 )))) ln∣((u−1)/(u+1))∣  +c  =(1/( (√(1−a^2 )))) ln∣(((√((1−a)/(1+a )))tan((x/2))−1)/( (√((1−a)/(1+a)))tan((x/2)) +1))∣ +c  case 2   a>1 ⇒ I =_(t=(√((a+1)/(a−1)))u)    (2/(a−1))((a−1)/(a+1)) ∫   (1/(u^2 +1))(√((a+1)/(a−1)))du  =(2/( (√(a^2 −1)))) arctan(u)+c =(2/( (√(a^2 −1)))) arctan((√((a−1)/(a+1)))t) +c .
$${let}\:{I}\:=\:\int\:\:\frac{{dx}}{{a}+{cosx}}\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int\:\:\:\frac{\mathrm{1}}{{a}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int\:\:\:\:\:\frac{\mathrm{2}{dt}}{{a}+{at}^{\mathrm{2}} +\mathrm{1}−{t}^{\mathrm{2}} }\:=\int\:\:\frac{\mathrm{2}{dt}}{\left({a}−\mathrm{1}\right){t}^{\mathrm{2}} \:+{a}+\mathrm{1}} \\ $$$$=\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}\:\:\:\:{case}\:\mathrm{1}\:\:\:\:\mathrm{0}<{a}<\mathrm{1}\:\Rightarrow{I}\:=\frac{\mathrm{2}}{{a}−\mathrm{1}}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}} \\ $$$$=\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\left(\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}\right)^{\mathrm{2}} }\:=_{{t}=\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{u}} \:\:\:\:\frac{\mathrm{2}}{{a}−\mathrm{1}}\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}}\:\int\:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} −\mathrm{1}}\sqrt{\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}}{du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}+{a}}×\frac{\sqrt{\mathrm{1}+{a}}}{\:\sqrt{\mathrm{1}−{a}}}\:\int\left(\frac{\mathrm{1}}{{u}−\mathrm{1}}−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right){du}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:{ln}\mid\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\mid\:\:+{c} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }}\:{ln}\mid\frac{\sqrt{\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}\:}}{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}}}{tan}\left(\frac{{x}}{\mathrm{2}}\right)\:+\mathrm{1}}\mid\:+{c} \\ $$$${case}\:\mathrm{2}\:\:\:{a}>\mathrm{1}\:\Rightarrow\:{I}\:=_{{t}=\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{u}} \:\:\:\frac{\mathrm{2}}{{a}−\mathrm{1}}\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\:\int\:\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{du} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:{arctan}\left({u}\right)+{c}\:=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:{arctan}\left(\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}}{t}\right)\:+{c}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *