find-dx-x-2-1-x-2-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 73482 by abdomathmax last updated on 13/Nov/19 find∫dxx2+1+x2+3 Commented by abdomathmax last updated on 17/Nov/19 letI=∫dxx2+1+x2+3⇒I=∫x2+3−x2+12dx=12∫x2+3dx−12∫x2+1dxwehave∫x2+3dx=x=3sh(t)3∫3ch(t)ch(t)=3∫1+ch(2t)2dt=32t+34sh(2t)+c1=34t+342sh(t)ch(t)+c1=34argsh(x3)+32x31+x23+c=34ln(x3+1+x23)+x23+x2+c1∫x2+1dx=x=sh(t)∫ch(t)ch(t)dt=∫1+ch(2t)2dt=t2+14sh(2t)+c2=t2+12sh(g)ch(t)+c2=12ln(x+1+x2)+x21+x2+c2⇒I=38ln(x+3+x2)+x43+x2−14ln(x+1+x2)−x41+x2+C Answered by ajfour last updated on 13/Nov/19 I=∫dxx2+1+x2+3=12∫(x2+3−x2+1)dx=x4(x2+3−x2+1)+34ln∣x+x2+3∣−14ln∣x+x2+1∣+c__________________________. Commented by abdomathmax last updated on 17/Nov/19 thankssir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-xe-x-2-arcran-x-1-x-dx-Next Next post: decompose-inside-C-x-the-fraction-F-x-1-x-2-1-n-calculate-0-F-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.