Menu Close

find-dx-x-2-x-2-x-7-




Question Number 73483 by abdomathmax last updated on 13/Nov/19
find ∫    (dx/(x+2−(√(x^2 −x +7))))
finddxx+2x2x+7
Answered by MJS last updated on 13/Nov/19
∫(dx/(x+2−(√(x^2 −x+7))))=∫(dx/(x+2−(√((x−(1/2))^2 +((27)/4)))))=       [t=((√3)/9)(2x−1) → dx=((3(√3))/2)dt]  =∫(dt/(t+((5(√3))/9)−(√(t^2 +1))))=       [t=sinh ln u =((u^2 −1)/(2u)) ⇒ u=t+(√(t^2 +1)) → dt=((u^2 +1)/(2u^2 ))du]  =((3(√3))/2)∫((u^2 +1)/(u(5u−3(√3))))du=  =((3(√3))/(10))∫du−(1/2)∫(du/u)+((26)/(25))∫(du/(u−((3(√3))/5)))=  =((3(√3))/(10))u−(1/2)ln u +((26)/(25))ln (5u−3(√3)) =  ...  =((2x−1+2(√(x^2 −x+7)))/(10))−(1/2)ln (2x−1+2(√(x^2 −x+7))) +((26)/(25))ln (5x−16+5(√(x^2 −x+7))) +C
dxx+2x2x+7=dxx+2(x12)2+274=[t=39(2x1)dx=332dt]=dtt+539t2+1=[t=sinhlnu=u212uu=t+t2+1dt=u2+12u2du]=332u2+1u(5u33)du==3310du12duu+2625duu335==3310u12lnu+2625ln(5u33)==2x1+2x2x+71012ln(2x1+2x2x+7)+2625ln(5x16+5x2x+7)+C
Commented by abdomathmax last updated on 17/Nov/19
thanks sir mjs.
thankssirmjs.

Leave a Reply

Your email address will not be published. Required fields are marked *