Menu Close

find-dx-x-2-z-with-z-from-C-




Question Number 67851 by mathmax by abdo last updated on 01/Sep/19
find ∫  (dx/(x^2 −z))  with z from C .
finddxx2zwithzfromC.
Commented by MJS last updated on 01/Sep/19
what′s the problem/mistake if we just  calculate it as if z∈R?  ∫(dx/(x^2 −z))=(1/(2(√z)))ln ((x−(√z))/(x+(√z))) +C  for ∫_0 ^∞ (dx/(x^2 −z)) this would give −(π/(2(√z)))i
whatstheproblem/mistakeifwejustcalculateitasifzR?dxx2z=12zlnxzx+z+Cfor0dxx2zthiswouldgiveπ2zi
Commented by mathmax by abdo last updated on 01/Sep/19
let z=r e^(iθ)  ⇒∫   (dx/(x^2 −z)) =∫  (dx/(x^2 −((√r)e^((iθ)/2) )^2 ))  =∫    (dx/((x−(√r)e^((iθ)/2) )(x+(√r)e^((iθ)/2) ))) =(1/(2(√r)e^((iθ)/2) ))∫((1/(x−(√r)e^((iθ)/2) ))−(1/(x+(√r)e^((iθ)/2) )))dx  =(e^(−((iθ)/2)) /(2(√r))) ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) ))) +C .
letz=reiθdxx2z=dxx2(reiθ2)2=dx(xreiθ2)(x+reiθ2)=12reiθ2(1xreiθ21x+reiθ2)dx=eiθ22rln(xreiθ2x+reiθ2)+C.
Commented by mathmax by abdo last updated on 01/Sep/19
sir mjs your answer is correct .
sirmjsyouransweriscorrect.
Commented by mathmax by abdo last updated on 01/Sep/19
∫_0 ^∞   (dx/(x^2 −z)) =(e^(−((iθ)/2)) /(2(√r)))[ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) )))]_0 ^(+∞) =(e^(−((iθ)/2)) /(2(√r)))(−ln(−1)) =((iπ)/(2(2(√r))e^((iθ)/2) ))  =((iπ)/(4(√r)e^((iθ)/2) ))   with z =r e^(iθ)  .
0dxx2z=eiθ22r[ln(xreiθ2x+reiθ2)]0+=eiθ22r(ln(1))=iπ2(2r)eiθ2=iπ4reiθ2withz=reiθ.
Commented by MJS last updated on 01/Sep/19
thank you  I just wasn′t sure if this was allowed in C
thankyouIjustwasntsureifthiswasallowedinC

Leave a Reply

Your email address will not be published. Required fields are marked *