Menu Close

find-dx-x-3-x-2-4x-




Question Number 66308 by mathmax by abdo last updated on 12/Aug/19
find ∫   (dx/((x+3)(√(−x^2 −4x))))
finddx(x+3)x24x
Commented by prof Abdo imad last updated on 16/Aug/19
let A =∫ (dx/((x+3)(√(−x^2 −4x))))  we have  −x^2 −4x=−(x^2  +4x+4−4)=4−(x+2)^2   we use the changement x+2=2sint ⇒  A =∫   ((2cost dt)/((2sint−2+3)2cost)) =∫   (dt/(2sint +1))  =_(tan((t/2))=u)       ∫     (1/((2((2u)/(1+u^2 ))+1)))((2du)/(1+u^2 ))  =∫     ((2du)/((4u +1+u^2 ))) =∫   ((2du)/(u^2  +4u +1))  u^2  +4u +1=0→Δ^′  =4−1=3 ⇒  u_1 =−2+(√3) and u_2 =−2−(√(3 ))⇒  A  = ∫  ((2du)/((u−u_1 )(u−u_2 ))) =(1/( (√3))) ∫ ((1/(u−u_1 ))−(1/(u−u_2 )))du  =(1/( (√3)))ln∣((u−u_1 )/(u−u_2 ))∣+C=(1/( (√3)))ln∣((tan((t/2))+2−(√3))/(tan((t/2))+2+(√3)))∣ +C  but t =arcsin(((x+2)/2)) ⇒  A =(1/( (√3)))ln∣((tan((1/2)arcsin((x/2)+1)+2−(√3))/(tan((1/2)arcsin((x/2)+1))+2+(√3)))∣ +C
letA=dx(x+3)x24xwehavex24x=(x2+4x+44)=4(x+2)2weusethechangementx+2=2sintA=2costdt(2sint2+3)2cost=dt2sint+1=tan(t2)=u1(22u1+u2+1)2du1+u2=2du(4u+1+u2)=2duu2+4u+1u2+4u+1=0Δ=41=3u1=2+3andu2=23A=2du(uu1)(uu2)=13(1uu11uu2)du=13lnuu1uu2+C=13lntan(t2)+23tan(t2)+2+3+Cbutt=arcsin(x+22)A=13lntan(12arcsin(x2+1)+23tan(12arcsin(x2+1))+2+3+C

Leave a Reply

Your email address will not be published. Required fields are marked *