find-dx-x-3-x-2-4x- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66308 by mathmax by abdo last updated on 12/Aug/19 find∫dx(x+3)−x2−4x Commented by prof Abdo imad last updated on 16/Aug/19 letA=∫dx(x+3)−x2−4xwehave−x2−4x=−(x2+4x+4−4)=4−(x+2)2weusethechangementx+2=2sint⇒A=∫2costdt(2sint−2+3)2cost=∫dt2sint+1=tan(t2)=u∫1(22u1+u2+1)2du1+u2=∫2du(4u+1+u2)=∫2duu2+4u+1u2+4u+1=0→Δ′=4−1=3⇒u1=−2+3andu2=−2−3⇒A=∫2du(u−u1)(u−u2)=13∫(1u−u1−1u−u2)du=13ln∣u−u1u−u2∣+C=13ln∣tan(t2)+2−3tan(t2)+2+3∣+Cbutt=arcsin(x+22)⇒A=13ln∣tan(12arcsin(x2+1)+2−3tan(12arcsin(x2+1))+2+3∣+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-dx-x-2-1-x-2-2-Next Next post: Question-66310 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.