Menu Close

find-dy-dx-if-x-sin-2-t-and-y-tan-t-at-t-pi-4-




Question Number 69764 by Rio Michael last updated on 27/Sep/19
find   (dy/dx)  if  x = sin^2 t  and  y= tan t at  t = (π/4)
finddydxifx=sin2tandy=tantatt=π4
Commented by kaivan.ahmadi last updated on 27/Sep/19
(dy/dx)=((dy/dt)/(dx/dt))=((1+tan^2 t)/(sin2t))
dydx=dydtdxdt=1+tan2tsin2t
Answered by mind is power last updated on 27/Sep/19
(dy/dx)=(dy/dt).(dt/dx)=(dy/dt).((dx/dt))^(−1) =(1+tg^2 (t)).(sin(2t))^(−1) ∣_(t=(π/4)) =2.1^(−1) =2
dydx=dydt.dtdx=dydt.(dxdt)1=(1+tg2(t)).(sin(2t))1t=π4=2.11=2

Leave a Reply

Your email address will not be published. Required fields are marked *