Menu Close

find-dy-dx-if-x-x-y-y-1-




Question Number 11545 by Nayon last updated on 28/Mar/17
find(dy/dx) if x^x y^y =1
finddydxifxxyy=1
Answered by Joel576 last updated on 28/Mar/17
y^y  = x^(−x)   y ln y = −x ln x  (d/dy) y ln y = (d/dx) −x ln x  (dy/dx) ln y + 1 = −(ln x + 1)  (dy/dx) = −((ln x + 1)/(ln y + 1))
yy=xxylny=xlnxddyylny=ddxxlnxdydxlny+1=(lnx+1)dydx=lnx+1lny+1
Answered by ajfour last updated on 28/Mar/17
taking natural logarithm:  xln x+yln y=0  differentiating we get,  ln x +1 +(dy/dx) ln y +(dy/dx) =0  (dy/dx)(1+ln y )= −(1+ln x )  (dy/dx)= −(((1+ln x)/(1+ln y))) = −((ln (ex))/(ln (ey))) .
takingnaturallogarithm:xlnx+ylny=0differentiatingweget,lnx+1+dydxlny+dydx=0dydx(1+lny)=(1+lnx)dydx=(1+lnx1+lny)=ln(ex)ln(ey).

Leave a Reply

Your email address will not be published. Required fields are marked *