Menu Close

find-dy-dx-if-y-3-x-e-2x-1-at-x-1-




Question Number 69763 by Rio Michael last updated on 27/Sep/19
find (dy/dx)  if  y = 3^x e^(2x + 1) , at x =1
$${find}\:\frac{{dy}}{{dx}}\:\:{if}\:\:{y}\:=\:\mathrm{3}^{{x}} {e}^{\mathrm{2}{x}\:+\:\mathrm{1}} ,\:{at}\:{x}\:=\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 16/Oct/19
y(x)=e^(xln3+2x+1)  ⇒y^′ (x)=(ln3+2) e^((2+ln3)x+1)  ⇒  y^′ (1)=(2+ln3)e^(2+ln3 +1)
$${y}\left({x}\right)={e}^{{xln}\mathrm{3}+\mathrm{2}{x}+\mathrm{1}} \:\Rightarrow{y}^{'} \left({x}\right)=\left({ln}\mathrm{3}+\mathrm{2}\right)\:{e}^{\left(\mathrm{2}+{ln}\mathrm{3}\right){x}+\mathrm{1}} \:\Rightarrow \\ $$$${y}^{'} \left(\mathrm{1}\right)=\left(\mathrm{2}+{ln}\mathrm{3}\right){e}^{\mathrm{2}+{ln}\mathrm{3}\:+\mathrm{1}} \\ $$
Commented by $@ty@m123 last updated on 16/Oct/19
It has minor typo error.
$${It}\:{has}\:{minor}\:{typo}\:{error}. \\ $$
Answered by $@ty@m123 last updated on 27/Sep/19
y = 3^x e^(2x + 1)   Take natural log,  ln y = ln 3^x e^(2x + 1)   ln y = ln 3^x +ln e^(2x + 1)   ln y = xln 3+2x+1  Differentiating,  (1/y)(dy/dx)=ln 3+2  (dy/dx)=y(2+ln 3) ...(1)  When x=1,  y=3^1 .e^3   ∴ (dy/dx) =3e^3 (2+ln 3)
$${y}\:=\:\mathrm{3}^{{x}} {e}^{\mathrm{2}{x}\:+\:\mathrm{1}} \\ $$$${Take}\:{natural}\:{log}, \\ $$$$\mathrm{ln}\:{y}\:=\:\mathrm{ln}\:\mathrm{3}^{{x}} {e}^{\mathrm{2}{x}\:+\:\mathrm{1}} \\ $$$$\mathrm{ln}\:{y}\:=\:\mathrm{ln}\:\mathrm{3}^{{x}} +\mathrm{ln}\:{e}^{\mathrm{2}{x}\:+\:\mathrm{1}} \\ $$$$\mathrm{ln}\:{y}\:=\:{x}\mathrm{ln}\:\mathrm{3}+\mathrm{2}{x}+\mathrm{1} \\ $$$${Differentiating}, \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\mathrm{ln}\:\mathrm{3}+\mathrm{2} \\ $$$$\frac{{dy}}{{dx}}={y}\left(\mathrm{2}+\mathrm{ln}\:\mathrm{3}\right)\:…\left(\mathrm{1}\right) \\ $$$${When}\:{x}=\mathrm{1}, \\ $$$${y}=\mathrm{3}^{\mathrm{1}} .{e}^{\mathrm{3}} \\ $$$$\therefore\:\frac{{dy}}{{dx}}\:=\mathrm{3}{e}^{\mathrm{3}} \left(\mathrm{2}+\mathrm{ln}\:\mathrm{3}\right) \\ $$
Commented by Rio Michael last updated on 27/Sep/19
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *