find-f-0-arctan-x-x-2-3-2-dx-with-real- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 72012 by mathmax by abdo last updated on 23/Oct/19 findf(α)=∫0∞arctan(αx)(x2+3)2dxwithαreal. Commented by mathmax by abdo last updated on 07/Nov/19 wehavef(α)=∫0∞arctan(αx)(x2+3)2dx⇒f′(α)=∫0∞x(1+α2x2)(x2+3)2dx=αx=t∫0∞tα(1+t2)(t2α2+3)2dtα=α4α2∫0∞tdt(t2+1)(t2+3α2)2=α2∫0∞tdt(t2+1)(t2+3α2)2letdecomposeF(t)=t(t2+1)(t2+3α2)2F(t)=at+bt2+1+ct+dt2+3α2+et+f(t2+3α2)2F(−t)=F(t)⇒−at+bt2+1+−ct+dt2+3α2+−et+f(t2+3α2)2=−at−bt2+1+−ct−dt2+3α2+−et−f(t2+3α2)2⇒b=d=f=0⇒F(t)=att2+1+ctt2+3α2+et(t2+3α2)2limt→+∞tF(t)=0=a+c+e⇒e=−a−c⇒F(t)=att2+1+ctt2+3α2−(a+c)t(t2+3α2)2F(1)=12(1+3α2)2=a2+c1+3α2−a+c(1+3α2)2⇒12=12(1+3α2)2a+(1+3α2)c−a−c⇒1=(1+3α2)2a+2(1+3α2)c−2a−2c⇒{(1+3α2)2−2}a+{2(1+3α2)−2}c=1….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-6476Next Next post: find-x-4-x-2-x-4-3x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.