Menu Close

find-f-0-arctan-x-x-2-3-2-dx-with-real-




Question Number 72012 by mathmax by abdo last updated on 23/Oct/19
find f(α) =∫_0 ^∞   ((arctan(αx))/((x^2 +3)^2 ))dx  with α real.
findf(α)=0arctan(αx)(x2+3)2dxwithαreal.
Commented by mathmax by abdo last updated on 07/Nov/19
we have f(α)=∫_0 ^∞  ((arctan(αx))/((x^2  +3)^2 ))dx ⇒  f^′ (α) =∫_0 ^∞  (x/((1+α^2 x^2 )(x^2  +3)^2 ))dx =_(αx =t)   ∫_0 ^∞  (t/(α(1+t^2 )((t^2 /α^2 ) +3)^2 ))(dt/α)  =(α^4 /α^2 )∫_0 ^∞    ((tdt)/((t^2  +1)(t^2  +3α^2 )^2 )) =α^(2 )  ∫_0 ^∞   ((tdt)/((t^2  +1)(t^2  +3α^2 )^2 ))  let decompose F(t) =(t/((t^2  +1)(t^2  +3α^2 )^2 ))  F(t)=((at +b)/(t^(2 ) +1)) +((ct+d)/(t^2  +3α^2 )) +((et +f)/((t^2  +3α^2 )^2 ))  F(−t)=F(t) ⇒((−at+b)/(t^2  +1))+((−ct+d)/(t^2  +3α^2 )) +((−et+f)/((t^2  +3α^2 )^2 )) =((−at−b)/(t^2  +1))+((−ct−d)/(t^2  +3α^2 ))  +((−et−f)/((t^2  +3α^2 )^2 )) ⇒b=d=f=0 ⇒  F(t) =((at)/(t^2  +1)) +((ct)/(t^(2 ) +3α^2 )) +((et)/((t^2  +3α^2 )^2 ))  lim_(t→+∞) tF(t) =0 =a+c+e ⇒e =−a−c ⇒  F(t)=((at)/(t^2  +1)) +((ct)/(t^2  +3α^2 ))−(((a+c)t)/((t^2  +3α^2 )^2 ))  F(1) =(1/(2(1+3α^2 )^2 )) =(a/2) +(c/(1+3α^2 ))−((a+c)/((1+3α^2 )^2 )) ⇒  (1/2) =(1/2)(1+3α^2 )^2 a +(1+3α^2 )c−a−c ⇒  1 =(1+3α^2 )^2 a+2(1+3α^2 )c−2a−2c ⇒  {(1+3α^2 )^2 −2}a +{2(1+3α^2 )−2}c =1  ....be continued...
wehavef(α)=0arctan(αx)(x2+3)2dxf(α)=0x(1+α2x2)(x2+3)2dx=αx=t0tα(1+t2)(t2α2+3)2dtα=α4α20tdt(t2+1)(t2+3α2)2=α20tdt(t2+1)(t2+3α2)2letdecomposeF(t)=t(t2+1)(t2+3α2)2F(t)=at+bt2+1+ct+dt2+3α2+et+f(t2+3α2)2F(t)=F(t)at+bt2+1+ct+dt2+3α2+et+f(t2+3α2)2=atbt2+1+ctdt2+3α2+etf(t2+3α2)2b=d=f=0F(t)=att2+1+ctt2+3α2+et(t2+3α2)2limt+tF(t)=0=a+c+ee=acF(t)=att2+1+ctt2+3α2(a+c)t(t2+3α2)2F(1)=12(1+3α2)2=a2+c1+3α2a+c(1+3α2)212=12(1+3α2)2a+(1+3α2)cac1=(1+3α2)2a+2(1+3α2)c2a2c{(1+3α2)22}a+{2(1+3α2)2}c=1.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *