Menu Close

find-f-a-1-2-arctan-x-a-x-dx-and-calculate-f-a-at-form-of-integral-




Question Number 68040 by mathmax by abdo last updated on 03/Sep/19
find f(a) =∫_1 ^2 arctan(x+(a/x))dx  and  calculate f^′ (a) at form of integral
findf(a)=12arctan(x+ax)dxandcalculatef(a)atformofintegral
Commented by mathmax by abdo last updated on 04/Sep/19
f(a) =∫_1 ^2  arctan(x+(a/x))dx  by parts   f(a) =[x arctan(x+(a/x))]_1 ^2 −∫_1 ^2 x((1−(a/x^2 ))/(1+(x+(a/x))^2 ))dx  =2 arctan(2+(a/2))−arctan(1+a)−∫_1 ^2   ((x(x^2 −a))/(x^2  +(x^2  +a)^2 ))dx  let J =∫_1 ^2  ((x^3 −ax)/(x^2  +(x^2  +a)^2 ))dx ⇒ J =∫_1 ^2  ((x^3 −ax)/(x^2  +x^4  +2ax^2  +a^2 ))dx  =∫_1 ^2   ((x^3 −ax)/(x^4  +(2a+1)x^2  +a^2 ))  x^4  +(2a+1)x^2  +a^2 =0 ⇒t^2  +(2a+1)t +a^2 =0  with t=x^2   Δ =(2a+1)^2 −4a^2  =4a^2 +4a +1−4a^2 =4a+1  case 1  if 4a+1≥0 ⇒ t_1 =((−(2a+1)+(√(4a+1)))/2)  and t_2 =((−(2a+1)−(√(4a+1)))/2) ⇒x^4  +(2a+1)x^2 +a^2   =(t−t_1 )(t−t_2 ) (x^2 −t_1 )(x^2 −t_2 ) ⇒  J =(1/(t_1 −t_2 ))∫_1 ^2  (x^3 −ax){(1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))}dx  =(1/( (√(4a+1)))){ ∫_1 ^2  ((x^3 −ax)/(x^2 −t_1 ))dx −∫_1 ^2  ((x^3 −ax)/(x^2 −t_2 ))dx} we have  ∫_1 ^2  ((x^3 −ax)/(x^2 −t_1 ))dx =∫_1 ^2  ((x(x^2 −t_1 )+xt_1 −ax)/(x^2 −t_1 ))dx  =[(x^2 /2)]_1 ^2   +(t_1 −a) ∫_1 ^2    ((xdx)/(x^2 −t_1 )) =2−(1/2) +((t_1 −a)/2)[ln∣x^2 −t_1 ∣]_1 ^2   =(3/2) +((t_1 −a)/2){ln∣((4−t_1 )/(1−t_1 ))∣} also we get  ∫_1 ^2  ((x^3 −ax)/(x^2 −t_2 )) dx =(3/2) +((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣ ⇒  J =(1/( (√(4a+1)))){(((t_1 −a))/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣} ⇒  f(a) =2arctan(2+(a/2))−arctan(1+a)  −(1/( (√(4a+1)))){ ((t_1 −a)/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣}.  rest to calculate f(a) if 4a+1<0 ??....becontinued...
f(a)=12arctan(x+ax)dxbypartsf(a)=[xarctan(x+ax)]1212x1ax21+(x+ax)2dx=2arctan(2+a2)arctan(1+a)12x(x2a)x2+(x2+a)2dxletJ=12x3axx2+(x2+a)2dxJ=12x3axx2+x4+2ax2+a2dx=12x3axx4+(2a+1)x2+a2x4+(2a+1)x2+a2=0t2+(2a+1)t+a2=0witht=x2Δ=(2a+1)24a2=4a2+4a+14a2=4a+1case1if4a+10t1=(2a+1)+4a+12andt2=(2a+1)4a+12x4+(2a+1)x2+a2=(tt1)(tt2)(x2t1)(x2t2)J=1t1t212(x3ax){1x2t11x2t2}dx=14a+1{12x3axx2t1dx12x3axx2t2dx}wehave12x3axx2t1dx=12x(x2t1)+xt1axx2t1dx=[x22]12+(t1a)12xdxx2t1=212+t1a2[lnx2t1]12=32+t1a2{ln4t11t1}alsoweget12x3axx2t2dx=32+t2a2ln4t21t2J=14a+1{(t1a)2ln4t11t1t2a2ln4t21t2}f(a)=2arctan(2+a2)arctan(1+a)14a+1{t1a2ln4t11t1t2a2ln4t21t2}.resttocalculatef(a)if4a+1<0??.becontinued
Commented by mathmax by abdo last updated on 05/Sep/19
f^′ (a) =∫_1 ^2      (dx/(x(1+(x+(a/x))^2 ))) =∫_1 ^2    ((x^2 dx)/(x{x^2  +(x^2  +a)^2 }))  =∫_1 ^2    ((xdx)/(x^2  +x^4  +2ax^2  +a^2 )) =∫_1 ^2  ((xdx)/(x^4  +(2a+1)x^2  +a^2 ))
f(a)=12dxx(1+(x+ax)2)=12x2dxx{x2+(x2+a)2}=12xdxx2+x4+2ax2+a2=12xdxx4+(2a+1)x2+a2
Answered by mind is power last updated on 03/Sep/19
integration by part  f(spa)=[xarctg(x+(a/x))]−∫x(((1−(a/x^2 )))/(1+(x+(a/x))^2 ))dx  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^2 ((x(x^2 −a))/(x^4 +(2a+1)x^2 +a^2 ))dx  u=x^2   du=2xdx  f(a)=2arctv(2+(a/2))−arctg(1+a)−∫_1 ^4 (((u−a)du)/(2(u^2 +(2a+1)u+a^2 )))  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2))−2a−(1/2))/(2(u^2 +(2a+1)u+a^2 ))du  =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2)))/(2(u^2 +(2a+1)u+a^2 ))du+((4a+1)/2)∫_1 ^4 (1/((u+((2a+1)/2))^2 +a+(1/4)))du  a>−(1/4)  =2arctg(2+(a/2))−arctg(1+a)−(1/4)[ln(u^2 +(2a+1)u+a^2 )]_1 ^4 +2∫_1 ^4 (du/((((2u)/( (√(4a+1))))+((2a+1)/( (√(4a+1)))))^2 +1))  =2arctg(2+(a/2))−arctg(1+a)−(1/4)ln(((a^2 +8a+20)/(a^2 +2a+2)))+(√(4a+1))[arctg(((2u)/( (√(4a+1))))+((2a+1)/( (√(4a+1)))))]_1 ^2   bee continued
integrationbypartf(spa)=[xarctg(x+ax)]x(1ax2)1+(x+ax)2dx=2arctg(2+a2)arctg(1+a)12x(x2a)x4+(2a+1)x2+a2dxu=x2du=2xdxf(a)=2arctv(2+a2)arctg(1+a)14(ua)du2(u2+(2a+1)u+a2)=2arctg(2+a2)arctg(1+a)14u+(a+12)2a122(u2+(2a+1)u+a2du=2arctg(2+a2)arctg(1+a)14u+(a+12)2(u2+(2a+1)u+a2du+4a+12141(u+2a+12)2+a+14dua>14=2arctg(2+a2)arctg(1+a)14[ln(u2+(2a+1)u+a2)]14+214du(2u4a+1+2a+14a+1)2+1=2arctg(2+a2)arctg(1+a)14ln(a2+8a+20a2+2a+2)+4a+1[arctg(2u4a+1+2a+14a+1)]12beecontinued
Commented by mathmax by abdo last updated on 04/Sep/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *