Question Number 68040 by mathmax by abdo last updated on 03/Sep/19

Commented by mathmax by abdo last updated on 04/Sep/19
![f(a) =∫_1 ^2 arctan(x+(a/x))dx by parts f(a) =[x arctan(x+(a/x))]_1 ^2 −∫_1 ^2 x((1−(a/x^2 ))/(1+(x+(a/x))^2 ))dx =2 arctan(2+(a/2))−arctan(1+a)−∫_1 ^2 ((x(x^2 −a))/(x^2 +(x^2 +a)^2 ))dx let J =∫_1 ^2 ((x^3 −ax)/(x^2 +(x^2 +a)^2 ))dx ⇒ J =∫_1 ^2 ((x^3 −ax)/(x^2 +x^4 +2ax^2 +a^2 ))dx =∫_1 ^2 ((x^3 −ax)/(x^4 +(2a+1)x^2 +a^2 )) x^4 +(2a+1)x^2 +a^2 =0 ⇒t^2 +(2a+1)t +a^2 =0 with t=x^2 Δ =(2a+1)^2 −4a^2 =4a^2 +4a +1−4a^2 =4a+1 case 1 if 4a+1≥0 ⇒ t_1 =((−(2a+1)+(√(4a+1)))/2) and t_2 =((−(2a+1)−(√(4a+1)))/2) ⇒x^4 +(2a+1)x^2 +a^2 =(t−t_1 )(t−t_2 ) (x^2 −t_1 )(x^2 −t_2 ) ⇒ J =(1/(t_1 −t_2 ))∫_1 ^2 (x^3 −ax){(1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))}dx =(1/( (√(4a+1)))){ ∫_1 ^2 ((x^3 −ax)/(x^2 −t_1 ))dx −∫_1 ^2 ((x^3 −ax)/(x^2 −t_2 ))dx} we have ∫_1 ^2 ((x^3 −ax)/(x^2 −t_1 ))dx =∫_1 ^2 ((x(x^2 −t_1 )+xt_1 −ax)/(x^2 −t_1 ))dx =[(x^2 /2)]_1 ^2 +(t_1 −a) ∫_1 ^2 ((xdx)/(x^2 −t_1 )) =2−(1/2) +((t_1 −a)/2)[ln∣x^2 −t_1 ∣]_1 ^2 =(3/2) +((t_1 −a)/2){ln∣((4−t_1 )/(1−t_1 ))∣} also we get ∫_1 ^2 ((x^3 −ax)/(x^2 −t_2 )) dx =(3/2) +((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣ ⇒ J =(1/( (√(4a+1)))){(((t_1 −a))/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣} ⇒ f(a) =2arctan(2+(a/2))−arctan(1+a) −(1/( (√(4a+1)))){ ((t_1 −a)/2)ln∣((4−t_1 )/(1−t_1 ))∣−((t_2 −a)/2)ln∣((4−t_2 )/(1−t_2 ))∣}. rest to calculate f(a) if 4a+1<0 ??....becontinued...](https://www.tinkutara.com/question/Q68101.png)
Commented by mathmax by abdo last updated on 05/Sep/19

Answered by mind is power last updated on 03/Sep/19
![integration by part f(spa)=[xarctg(x+(a/x))]−∫x(((1−(a/x^2 )))/(1+(x+(a/x))^2 ))dx =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^2 ((x(x^2 −a))/(x^4 +(2a+1)x^2 +a^2 ))dx u=x^2 du=2xdx f(a)=2arctv(2+(a/2))−arctg(1+a)−∫_1 ^4 (((u−a)du)/(2(u^2 +(2a+1)u+a^2 ))) =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2))−2a−(1/2))/(2(u^2 +(2a+1)u+a^2 ))du =2arctg(2+(a/2))−arctg(1+a)−∫_1 ^4 ((u+(a+(1/2)))/(2(u^2 +(2a+1)u+a^2 ))du+((4a+1)/2)∫_1 ^4 (1/((u+((2a+1)/2))^2 +a+(1/4)))du a>−(1/4) =2arctg(2+(a/2))−arctg(1+a)−(1/4)[ln(u^2 +(2a+1)u+a^2 )]_1 ^4 +2∫_1 ^4 (du/((((2u)/( (√(4a+1))))+((2a+1)/( (√(4a+1)))))^2 +1)) =2arctg(2+(a/2))−arctg(1+a)−(1/4)ln(((a^2 +8a+20)/(a^2 +2a+2)))+(√(4a+1))[arctg(((2u)/( (√(4a+1))))+((2a+1)/( (√(4a+1)))))]_1 ^2 bee continued](https://www.tinkutara.com/question/Q68055.png)
Commented by mathmax by abdo last updated on 04/Sep/19
