Menu Close

find-f-a-b-0-cos-ax-cos-bx-x-2-a-2-x-2-b-2-dx-with-a-gt-0-and-b-gt-0-2-calculate-0-cos-x-cos-2x-x-2-1-x-2-4-dx-




Question Number 66466 by mathmax by abdo last updated on 15/Aug/19
find  f(a,b) =∫_0 ^∞     ((cos(ax)cos(bx))/((x^2 +a^2 )(x^2  +b^2 )))dx  with a>0 and b>0  2)calculate ∫_0 ^∞    ((cos(x)cos(2x))/((x^2  +1)(x^2  +4)))dx
findf(a,b)=0cos(ax)cos(bx)(x2+a2)(x2+b2)dxwitha>0andb>02)calculate0cos(x)cos(2x)(x2+1)(x2+4)dx
Commented by mathmax by abdo last updated on 17/Aug/19
1) we have f(a,b) =(1/2)∫_0 ^∞   ((cos(a+b)x+cos(a−b)x)/((x^2  +a^2 )(x^2  +b^(2)) ))dx  =(1/4)∫_(−∞) ^(+∞)  ((cos(a+b)x)/((x^2  +a^2 )(x^2  +b^2 )))dx +(1/4)∫_(−∞) ^(+∞)  ((cos(a−b)x)/((x^2  +a^2 )(x^2  +b^2 )))dx ⇒  4f(,b) =H +K  H =Re( ∫_(−∞) ^(+∞)  (e^(i(a+b)x) /((x^2  +a^2 )(x^2  +b^2 )))dx)let ϕ(z)=(e^(i(a+b)z) /((x^2  +a^2 )(x^2  +b^2 )))  ϕ(z) =(e^(i(a+b)z) /((x−ia)(x+ia)(x−ib)(x+ib))) so the poles of ϕ are   +^− ia and +^− ib  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,ia)+Res(ϕ,ib)}  Res(ϕ,ia) =(e^(i(a+b)ia) /((2ia)(b^2 −a^2 )))          (ifa≠b)  =(e^(−a(a+b)) /((2ia)(b^2 −a^2 )))  Res(ϕ,ib) = (e^(i(a+b)ib) /((2ib)(a^2 −b^2 ))) =(e^(−b(a+b)) /(2ib(a^2 −b^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{  (e^(−a^2 −ab) /(2ia(b^2 −a^2 ))) +(e^(−b^2 −ab) /(2ib(a^2 −b^2 )))}  =(π/(a^2 −b^2 )){  (e^(−b^2 −ab) /b)−(e^(−a^2 −ab) /a)} =H  (the integral is real) for k  we change b by −b we get  K =(π/(a^2 −b^2 )){(e^(−b^2 +ab) /(−b))−(e^(−a^2 +ab) /a)} ⇒  f(a,b) =(π/(4(a^2 −b^2 ))){ ((e^(−b^2 −ab) −e^(−b^2 +ab) )/b)−((e^(−a^2 −ab) +e^(−a^2  +ab) )/a)}  and we must study the case a=b...  2)∫_0 ^∞    ((cosx cos(2x))/((x^2  +1)(x^2 +4)))dx =f(1,2)  =(π/(4(−3))){  ((e^(−6)  −e^(−2) )/2) −((e^(−3)  +e^1 )/1)} =−(π/(12)){((e^(−6) −e^(−2) −2e^(−3) −2e)/2)}  =(π/(24)){2e^(−3)  +e^(−2) +2e −e^(−6) } .
1)wehavef(a,b)=120cos(a+b)x+cos(ab)x(x2+a2)(x2+b2)dx=14+cos(a+b)x(x2+a2)(x2+b2)dx+14+cos(ab)x(x2+a2)(x2+b2)dx4f(,b)=H+KH=Re(+ei(a+b)x(x2+a2)(x2+b2)dx)letφ(z)=ei(a+b)z(x2+a2)(x2+b2)φ(z)=ei(a+b)z(xia)(x+ia)(xib)(x+ib)sothepolesofφare+iaand+ibresidustheoremgive+φ(z)dz=2iπ{Res(φ,ia)+Res(φ,ib)}Res(φ,ia)=ei(a+b)ia(2ia)(b2a2)(ifab)=ea(a+b)(2ia)(b2a2)Res(φ,ib)=ei(a+b)ib(2ib)(a2b2)=eb(a+b)2ib(a2b2)+φ(z)dz=2iπ{ea2ab2ia(b2a2)+eb2ab2ib(a2b2)}=πa2b2{eb2abbea2aba}=H(theintegralisreal)forkwechangebbybwegetK=πa2b2{eb2+abbea2+aba}f(a,b)=π4(a2b2){eb2abeb2+abbea2ab+ea2+aba}andwemuststudythecasea=b2)0cosxcos(2x)(x2+1)(x2+4)dx=f(1,2)=π4(3){e6e22e3+e11}=π12{e6e22e32e2}=π24{2e3+e2+2ee6}.

Leave a Reply

Your email address will not be published. Required fields are marked *