find-f-a-b-0-cos-ax-cos-bx-x-2-a-2-x-2-b-2-dx-with-a-gt-0-and-b-gt-0-2-calculate-0-cos-x-cos-2x-x-2-1-x-2-4-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66466 by mathmax by abdo last updated on 15/Aug/19 findf(a,b)=∫0∞cos(ax)cos(bx)(x2+a2)(x2+b2)dxwitha>0andb>02)calculate∫0∞cos(x)cos(2x)(x2+1)(x2+4)dx Commented by mathmax by abdo last updated on 17/Aug/19 1)wehavef(a,b)=12∫0∞cos(a+b)x+cos(a−b)x(x2+a2)(x2+b2)dx=14∫−∞+∞cos(a+b)x(x2+a2)(x2+b2)dx+14∫−∞+∞cos(a−b)x(x2+a2)(x2+b2)dx⇒4f(,b)=H+KH=Re(∫−∞+∞ei(a+b)x(x2+a2)(x2+b2)dx)letφ(z)=ei(a+b)z(x2+a2)(x2+b2)φ(z)=ei(a+b)z(x−ia)(x+ia)(x−ib)(x+ib)sothepolesofφare+−iaand+−ibresidustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,ia)+Res(φ,ib)}Res(φ,ia)=ei(a+b)ia(2ia)(b2−a2)(ifa≠b)=e−a(a+b)(2ia)(b2−a2)Res(φ,ib)=ei(a+b)ib(2ib)(a2−b2)=e−b(a+b)2ib(a2−b2)⇒∫−∞+∞φ(z)dz=2iπ{e−a2−ab2ia(b2−a2)+e−b2−ab2ib(a2−b2)}=πa2−b2{e−b2−abb−e−a2−aba}=H(theintegralisreal)forkwechangebby−bwegetK=πa2−b2{e−b2+ab−b−e−a2+aba}⇒f(a,b)=π4(a2−b2){e−b2−ab−e−b2+abb−e−a2−ab+e−a2+aba}andwemuststudythecasea=b…2)∫0∞cosxcos(2x)(x2+1)(x2+4)dx=f(1,2)=π4(−3){e−6−e−22−e−3+e11}=−π12{e−6−e−2−2e−3−2e2}=π24{2e−3+e−2+2e−e−6}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: super-nice-0-1-x-3-1-x-3-2-dx-Next Next post: Question-66469 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.