Menu Close

find-f-dx-x-x-2-3-and-g-dx-x-x-2-3-2-with-real-




Question Number 69792 by mathmax by abdo last updated on 27/Sep/19
find f(α) =∫   (dx/(x+α+(√(x^2  +3))))  and g(α)=∫   (dx/((x+α+(√(x^2 +3)))^2 ))    with α real
findf(α)=dxx+α+x2+3andg(α)=dx(x+α+x2+3)2withαreal
Commented by mathmax by abdo last updated on 10/Oct/19
f(α)=∫ (dx/(x+α +(√(x^2 +3))))  changement x=(√3)sh(t)give  f(α)=∫  (((√3)ch(t)dt)/( (√3)sh(t) +α +(√3)ch(t))) =∫  (((e^t  +e^(−t) )/2)/(((e^t −e^(−t) )/2)+α +((e^t +e^(−t) )/2)))dt  = ∫   ((e^t  +e^(−t) )/(e^t −e^(−t)  +2α +e^t +e^(−t) )) dt = ∫  ((e^t  +e^(−t) )/(2e^t  +2α))dt  =_(e^t  =u)   (1/2) ∫  ((u+u^(−1) )/(u +α))(du/u) =(1/2) ∫ ((u^2 +1)/(u^2 (u+α)))du  let decompose  F(u) =((u^2 +1)/(u^2 (u+α))) ⇒F(u)=(a/u) +(b/(u+α)) +(c/u^2 )  b=lim_(u→−α)   (u+α)F(u)=((1+α^2 )/α^2 )  c=lim_(u→0) u^2 F(u)=(1/α) ⇒F(u)=(a/u) +((1+α^2 )/(α^2 (u+α))) +(1/(αu^2 ))  lim_(u→+∞) uF(u) =1 =a +((1+α^2 )/α^2 ) ⇒a=1−(1/α^2 )−1 =−(1/α^2 ) ⇒  F(u)=−(1/(α^2 u)) +((1+α^2 )/(α^2 (u+α))) +(1/(αu^2 )) ⇒  ∫ F(u)du =−(1/α^2 )ln∣u∣+((1+α^2 )/α^2 )ln∣u+α∣−(1/(αu)) +c  =−(t/α^2 ) +((1+α^2 )/α^2 )ln∣ e^t  +α∣ −(1/α)e^(−t)  +c but t=argsh((x/( (√3))))  =ln((x/( (√3)))+(√(1+(x^2 /3)))) ⇒  ∫ F(u)du =−(1/α^2 )ln((x/( (√3)))+(√(1+(x^2 /3))))+((1+α^2 )/α^2 )ln∣(x/3)+(√(1+(x^2 /3)))+α∣  −(1/(α((x/3)+(√(1+(x^2 /3))))))  +C  ⇒  f(α) =−(1/(2α^2 ))ln((x/( (√3)))+(√(1+(x^2 /3))))+((1+α^2 )/(2α^2 ))ln∣ (x/3)+(√(1+(x^2 /3)))+α∣  −(1/(2α((x/3)+(√(1+(x^2 /3)))))) +C .
f(α)=dxx+α+x2+3changementx=3sh(t)givef(α)=3ch(t)dt3sh(t)+α+3ch(t)=et+et2etet2+α+et+et2dt=et+etetet+2α+et+etdt=et+et2et+2αdt=et=u12u+u1u+αduu=12u2+1u2(u+α)duletdecomposeF(u)=u2+1u2(u+α)F(u)=au+bu+α+cu2b=limuα(u+α)F(u)=1+α2α2c=limu0u2F(u)=1αF(u)=au+1+α2α2(u+α)+1αu2limu+uF(u)=1=a+1+α2α2a=11α21=1α2F(u)=1α2u+1+α2α2(u+α)+1αu2F(u)du=1α2lnu+1+α2α2lnu+α1αu+c=tα2+1+α2α2lnet+α1αet+cbutt=argsh(x3)=ln(x3+1+x23)F(u)du=1α2ln(x3+1+x23)+1+α2α2lnx3+1+x23+α1α(x3+1+x23)+Cf(α)=12α2ln(x3+1+x23)+1+α22α2lnx3+1+x23+α12α(x3+1+x23)+C.
Answered by MJS last updated on 28/Sep/19
∫(dx/(x+α+(√(x^2 +3))))=       [we have to substitute x=(√3)sinh t and         then t=ln u         ⇒ both in 1 step gives         u=((√3)/3)(x+(√(x^2 +3))) → dx=(((√3)(u^2 +1))/(2u^2 ))du         x=(((√3)(u^2 −1))/(2u))]  =((√3)/2)∫((u^2 +1)/(u^2 ((√3)u+α)))du=  =((√3)/(2α))∫(du/u^2 )−(3/(2α^2 ))∫(du/u)+(((√3)(α^2 +3))/(2α^2 ))∫(du/( (√3)u+α))=  =−((√3)/(2α))u^(−1) −(3/(2α^2 ))ln u +((α^2 +3)/(2α^2 ))ln ((√3)u+α) =  =(1/(2α))(x−(√(x^2 +3)))−(3/(2α^2 ))ln (x+(√(x^2 +3))) +((α^2 +3)/(2α^2 ))ln (x+α+(√(x^2 +3))) +C    ∫(dx/((x+α+(√(x^2 +3)))^2 ))=       [same substitution as above]  =((√3)/2)∫((u^2 +1)/(u^2 ((√3)u+α)^2 ))du=  =((√3)/(2α^2 ))∫(du/u^2 )−(3/α^3 )∫(du/u)+(((√3)(α^2 +3))/(2α^2 ))∫(du/(((√3)u+α)^2 ))+((3(√3))/α^3 )∫(du/( (√3)u+α))=  =−((√3)/(2α^2 ))u^(−1) −(3/α^3 )ln u −((α^2 +3)/(2α^2 ((√3)u+α)))+(3/α^3 )ln ((√3)u+α) =  =(1/(2α^2 ))(x−(√(x^2 +3)))−(3/α^3 )ln (x+(√(x^2 +3))) −((α^2 +3)/(2α^2 (x+α+(√(x^2 +3)))))+(3/α^3 )ln (x+α+(√(x^2 +3))) +C=  =((2αx^2 −6x−α(α^2 +3)−2(αx−3)(√(x^2 +3)))/(2α^2 (2αx+α^2 −3)))+(3/α^3 )ln (−αx+3+α(√(x^2 +3))) +C
dxx+α+x2+3=[wehavetosubstitutex=3sinhtandthent=lnubothin1stepgivesu=33(x+x2+3)dx=3(u2+1)2u2dux=3(u21)2u]=32u2+1u2(3u+α)du==32αduu232α2duu+3(α2+3)2α2du3u+α==32αu132α2lnu+α2+32α2ln(3u+α)==12α(xx2+3)32α2ln(x+x2+3)+α2+32α2ln(x+α+x2+3)+Cdx(x+α+x2+3)2=[samesubstitutionasabove]=32u2+1u2(3u+α)2du==32α2duu23α3duu+3(α2+3)2α2du(3u+α)2+33α3du3u+α==32α2u13α3lnuα2+32α2(3u+α)+3α3ln(3u+α)==12α2(xx2+3)3α3ln(x+x2+3)α2+32α2(x+α+x2+3)+3α3ln(x+α+x2+3)+C==2αx26xα(α2+3)2(αx3)x2+32α2(2αx+α23)+3α3ln(αx+3+αx2+3)+C
Commented by mathmax by abdo last updated on 28/Sep/19
thank you sir mjs for this hardwork.
thankyousirmjsforthishardwork.

Leave a Reply

Your email address will not be published. Required fields are marked *