find-f-x-0-1-arctan-1-xt-dt-with-x-real- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67020 by mathmax by abdo last updated on 21/Aug/19 findf(x)=∫01arctan(1+xt)dtwithxreal Commented by mathmax by abdo last updated on 22/Aug/19 f(x)=∫01arctan(1+xt)dtbypartsf(x)=tarctan(1+xt)]01−∫01tx1+(1+xt)2dt=arctan(1+x)−x∫01t1+(1+xt)2dtbut∫01t1+(1+xt)2dt=∫01tdt1+1+2xt+x2t2=∫01tdtx2t2+2xt+2letdecomposeF(t)=tx2t2+2xt+2Δ′=x2−2x2=−x2<0ifx≠0soF(t)=tx2(t2+2tx+2x2)=tx2(t2+2tx+1x2+2x2−1x2)=tx2{(t+1x)2+1x2}weusethechangementt+1x=1∣x∣u⇒xt+1=s(x)u∫s(x)(x+1)s(x)t1+(1+tx)2dt=∫s(x)(x+1)s(x)(1∣x∣u−1x)x2×1x2(1+u2)du=1∣x∣∫s(x)(x+1)s(x)u1+u2−1x∫s(x)(x+1)s(x)du1+u2=12∣x∣[ln(1+u2)]s(x)(x+1)s(x)−1x[arctanu]s(x)(x+1)s(x)(s2(x)=1)=12∣x∣{ln(1+(x+1)2)−ln2}−1x{arctan(x+1)s(x)−arctan(s(x))}⇒f(x)=arctan(1+x)−s(x)2{ln(x2+2x+2)−ln(2)}+arctan(x+1)s(x)+xarctan(s(x))withs(x)=1ifx>0ands(x)=−1ifx<0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-f-x-0-1-ln-x-e-t-dt-with-x-gt-0-Next Next post: find-the-sequence-U-n-wich-verify-U-n-U-n-1-sin-n-n-from-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.