Menu Close

find-f-x-0-1-arctan-1-xt-dt-with-x-real-




Question Number 67020 by mathmax by abdo last updated on 21/Aug/19
find f(x) = ∫_0 ^1  arctan(1+xt)dt  with x real
findf(x)=01arctan(1+xt)dtwithxreal
Commented by mathmax by abdo last updated on 22/Aug/19
f(x)=∫_0 ^1  arctan(1+xt)dt  by parts   f(x) =t arctan(1+xt)]_0 ^1  −∫_0 ^1  t (x/(1+(1+xt)^2 ))dt  =arctan(1+x)−x ∫_0 ^1   (t/(1+(1+xt)^2 ))dt but  ∫_0 ^1  (t/(1+(1+xt)^2 ))dt =∫_0 ^1  ((tdt)/(1+1+2xt +x^2 t^2 )) =∫_0 ^1  ((tdt)/(x^2 t^2  +2xt +2))  let decompose F(t)=(t/(x^2 t^2  +2xt+2))  Δ^′  =x^2 −2x^2  =−x^2 <0  if x≠0 so   F(t) =(t/(x^2 (t^2  +((2t)/x)+(2/x^2 )))) =(t/(x^2 (t^2  +((2t)/x) +(1/x^2 ) +(2/x^2 )−(1/x^2 ))))  =(t/(x^2 {(t+(1/x))^2 +(1/x^2 )}))   we use the changement t+(1/x) =(1/(∣x∣))u ⇒xt+1=s(x)u  ∫_(s(x)) ^((x+1)s(x))   (t/(1+(1+tx)^2 ))dt =∫_(s(x)) ^((x+1)s(x))   ((((1/(∣x∣))u−(1/x)))/(x^2 ×(1/x^2 )(1+u^2 )))du  =(1/(∣x∣))∫_(s(x)) ^((x+1)s(x))   (u/(1+u^2 ))−(1/x) ∫_(s(x)) ^((x+1)s(x))  (du/(1+u^2 ))  =(1/(2∣x∣))[ln(1+u^2 )]_(s(x)) ^((x+1)s(x))  −(1/x)[arctanu]_(s(x)) ^((x+1)s(x))      (s^2 (x)=1)  =(1/(2∣x∣)){ln(1+(x+1)^2 )−ln2}−(1/x){arctan(x+1)s(x)−arctan(s(x))}  ⇒f(x)= arctan(1+x)−((s(x))/2){ln(x^2 +2x+2)−ln(2)}  +arctan(x+1)s(x)+x arctan(s(x))  with s(x) =1 if x>0 and s(x)=−1 if x<0
f(x)=01arctan(1+xt)dtbypartsf(x)=tarctan(1+xt)]0101tx1+(1+xt)2dt=arctan(1+x)x01t1+(1+xt)2dtbut01t1+(1+xt)2dt=01tdt1+1+2xt+x2t2=01tdtx2t2+2xt+2letdecomposeF(t)=tx2t2+2xt+2Δ=x22x2=x2<0ifx0soF(t)=tx2(t2+2tx+2x2)=tx2(t2+2tx+1x2+2x21x2)=tx2{(t+1x)2+1x2}weusethechangementt+1x=1xuxt+1=s(x)us(x)(x+1)s(x)t1+(1+tx)2dt=s(x)(x+1)s(x)(1xu1x)x2×1x2(1+u2)du=1xs(x)(x+1)s(x)u1+u21xs(x)(x+1)s(x)du1+u2=12x[ln(1+u2)]s(x)(x+1)s(x)1x[arctanu]s(x)(x+1)s(x)(s2(x)=1)=12x{ln(1+(x+1)2)ln2}1x{arctan(x+1)s(x)arctan(s(x))}f(x)=arctan(1+x)s(x)2{ln(x2+2x+2)ln(2)}+arctan(x+1)s(x)+xarctan(s(x))withs(x)=1ifx>0ands(x)=1ifx<0

Leave a Reply

Your email address will not be published. Required fields are marked *