Question Number 73397 by mathmax by abdo last updated on 11/Nov/19
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt} \\ $$
Commented by abdomathmax last updated on 12/Nov/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{u}\right)=\frac{−\mathrm{1}}{\mathrm{1}−{u}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}^{{n}} \:\:\:{if}\:\mid{u}\mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:+{c}\:\:\left({c}=\mathrm{0}\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{u}\right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}^{{n}} }{{n}}\:\:\:\:\:{we}\:{have}\:\mid{xt}^{\mathrm{2}} \mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} \:{t}^{\mathrm{2}{n}} }{{n}}\:\Rightarrow \\ $$$${f}\left({x}\right)=−\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} \:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} \:{t}^{\mathrm{2}{n}} }{{n}}\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}} \:\:{dt}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \frac{{x}^{{n}} }{{n}}\:\:{with} \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{e}^{−{t}} \:{dt}\:\:\:{let}\:{determinate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}} \:{e}^{−{t}} \:{dt} \\ $$$${by}\:{parts}\:\:{u}={t}^{{n}} \:{and}\:{v}^{'} ={e}^{−{t}} \:\Rightarrow \\ $$$${I}_{{n}} =\left[−{e}^{−{t}} \:{t}^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} {nt}^{{n}−\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$$$=−{e}^{−\mathrm{1}} \:+{n}\:{I}_{{n}−\mathrm{1}} ={nI}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\:\:\left({n}>\mathrm{0}\right) \\ $$$${let}\:{W}_{{n}} =\frac{{I}_{{n}} }{{n}!}\:\Rightarrow{W}_{{n}+\mathrm{1}} =\frac{{I}_{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}\:=\frac{\left({n}+\mathrm{1}\right){I}_{{n}} −\frac{\mathrm{1}}{{e}}}{\left({n}+\mathrm{1}\right)!} \\ $$$$=\frac{{I}_{{n}} }{{n}!}\:−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:={W}_{{n}} −\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$${W}_{{n}+\mathrm{1}} −{W}_{{n}} =−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({W}_{{k}+\mathrm{1}} −{W}_{{k}} \right)\:=−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!} \\ $$$$\Rightarrow{W}_{{n}} ={W}_{\mathrm{0}} −\frac{\mathrm{1}}{{e}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:{we}\:{have}\:{W}_{\mathrm{0}} ={I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$$$=\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{1}−{e}^{−\mathrm{1}} \:\Rightarrow{W}_{{n}} =\mathrm{1}−{e}^{−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$$${I}_{{n}} ={n}!{W}_{{n}} ={n}!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\:\Rightarrow \\ $$$${A}_{{n}} =\left(\mathrm{2}{n}\right)!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\:\Rightarrow \\ $$$${f}\left({x}\right)=−\sum_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{2}{n}\right)!\left\{\mathrm{1}−{e}^{−\mathrm{1}} −{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\frac{{x}^{{n}} }{{n}} \\ $$$$=\left({e}^{−\mathrm{1}} −\mathrm{1}\right)\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(\mathrm{2}{n}\right)!}{{n}}\:{x}^{{n}} \:+{e}^{−\mathrm{1}} \sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(\mathrm{2}{n}\right)!}{{n}}\left(\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}!}\right){x}^{{n}} \\ $$$$…..{be}\:{continued}…. \\ $$$$ \\ $$
Answered by mind is power last updated on 11/Nov/19
$${f}\left({x}\right)=\left[−{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} .−\mathrm{2}{xt}}{\mathrm{1}−{xt}^{\mathrm{2}} }{dt} \\ $$$$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\mathrm{2}{x}\int_{\mathrm{0}} ^{\mathrm{1}} .\frac{{te}^{−{t}} {dt}}{\left(\mathrm{1}−\sqrt{{x}}{t}\right)\left(\mathrm{1}+\sqrt{{x}}{t}\right)} \\ $$$$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} .\left(\mathrm{1}+{t}\sqrt{{x}}−\left(\mathrm{1}−{t}\sqrt{{x}}\right)\right)}{\left(\mathrm{1}−{t}\sqrt{{x}}\right)\left(\mathrm{1}+{t}\sqrt{{x}}\right)}{dt} \\ $$$$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)−\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} {dt}}{\mathrm{1}−{t}\sqrt{{x}}}+\sqrt{{x}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{t}} {dt}}{\mathrm{1}+{t}\sqrt{{x}}} \\ $$$${let}\:{u}=\mathrm{1}−{t}\sqrt{{x}}\:{in}\:{first}\:{and}\:{s}=\mathrm{1}+{t}\sqrt{{x}}\:{in}\:\mathrm{2}{nd} \\ $$$$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\int_{\mathrm{1}} ^{\mathrm{1}−\sqrt{{x}}} \frac{{e}^{\frac{{u}−\mathrm{1}}{\:\sqrt{{x}}}} }{{u}}{du}+\int_{\mathrm{1}} ^{\mathrm{1}+\sqrt{{x}}} \frac{{e}^{\frac{\mathrm{1}−{s}}{\:\sqrt{{x}}}} }{{s}}{ds} \\ $$$$\left.{m}=\frac{{u}}{\:\sqrt{{x}}}\:{in}\:{first}\:{m}=\frac{{s}}{\:\sqrt{{x}}}\:\:{in}\right]\mathrm{2}{nd} \\ $$$$=−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\underset{\frac{\mathrm{1}}{\:\sqrt{{x}}}} {\int}^{\frac{\mathrm{1}}{\:\sqrt{{x}}}−\mathrm{1}} \frac{{e}^{{m}} .{e}^{−\frac{\mathrm{1}}{\:\sqrt{{x}}}} }{{m}}.{dm}+\int_{\frac{\mathrm{1}}{\:\sqrt{{x}}}} ^{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{x}}}} {e}^{\frac{\mathrm{1}}{\:\sqrt{{x}}}} .{e}^{−{m}} .\frac{{dm}}{{m}}\mathrm{346} \\ $$$${We}\:{use}\:\:{Ei}\left({w}\right)=\int_{−\infty} ^{{w}} \frac{{e}^{{x}} }{{x}}{dx}=\int_{\infty} ^{−{w}} \frac{{e}^{−{x}} }{{x}}{dx} \\ $$$${Ei}\:\:{is}\:{exponential}\:{integral}\:{function}\: \\ $$$${we}\:{get}\:−{e}^{−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right)+\left\{{Ei}\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}−\mathrm{1}\right)−{Ei}\left(\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)\right\}{e}^{\frac{−\mathrm{1}}{\:\sqrt{{x}}}} +{e}^{\frac{\mathrm{1}}{\:\sqrt{{x}}}} \left\{{Ei}\left(−\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)−{Ei}\left(−\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt}\:{put}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$={e}^{−\mathrm{1}} {ln}\left(\mathrm{2}\right)+\left\{{Ei}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\mathrm{1}\right)−{Ei}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right\}{e}^{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} +{e}^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \left\{{Ei}\left(−\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)−{Ei}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right\} \\ $$
Commented by mind is power last updated on 11/Nov/19
$${y}'{re}\:{welcom} \\ $$
Commented by mathmax by abdo last updated on 11/Nov/19
$${thank}\:{you}\:{sir}. \\ $$