Menu Close

find-f-x-0-1-e-t-ln-1-xt-2-dt-with-x-lt-1-2-calculate-0-1-e-t-ln-1-t-2-2-dt-




Question Number 73397 by mathmax by abdo last updated on 11/Nov/19
find f(x)=∫_0 ^1  e^(−t) ln(1−xt^2 )dt  with ∣x∣<1  2)calculate ∫_0 ^1  e^(−t) ln(1−(t^2 /2))dt
findf(x)=01etln(1xt2)dtwithx∣<12)calculate01etln(1t22)dt
Commented by abdomathmax last updated on 12/Nov/19
1) we have ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n    if ∣u∣<1 ⇒  ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  (c=0) ⇒  ln(1−u) =−Σ_(n=1) ^∞  (u^n /n)     we have ∣xt^2 ∣<1 ⇒  ln(1−xt^2 ) =−Σ_(n=1) ^∞  ((x^n  t^(2n) )/n) ⇒  f(x)=−∫_0 ^1 e^(−t)  (Σ_(n=1) ^∞  ((x^n  t^(2n) )/n))dt  =−Σ_(n=1) ^∞  (x^n /n) ∫_0 ^1  t^(2n)  e^(−t)   dt =−Σ_(n=1) ^∞  A_n (x^n /n)  with  A_n =∫_0 ^1  t^(2n)  e^(−t)  dt   let determinate  I_n =∫_0 ^1  t^n  e^(−t)  dt  by parts  u=t^n  and v^′ =e^(−t)  ⇒  I_n =[−e^(−t)  t^n ]_0 ^1 +∫_0 ^1 nt^(n−1)  e^(−t)  dt  =−e^(−1)  +n I_(n−1) =nI_(n−1) −(1/e)  (n>0)  let W_n =(I_n /(n!)) ⇒W_(n+1) =(I_(n+1) /((n+1)!)) =(((n+1)I_n −(1/e))/((n+1)!))  =(I_n /(n!)) −(1/(e(n+1)!)) =W_n −(1/(e(n+1)!)) ⇒  W_(n+1) −W_n =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^(n−1) (W_(k+1) −W_k ) =−(1/e)Σ_(k=0) ^(n−1)   (1/((k+1)!))  ⇒W_n =W_0 −(1/e) Σ_(k=1) ^n  (1/(k!))  we have W_0 =I_0 =∫_0 ^1  e^(−t)  dt  =[−e^(−t) ]_0 ^1  =1−e^(−1)  ⇒W_n =1−e^(−1) −(1/e)Σ_(k=1) ^n  (1/(k!)) ⇒  I_n =n!W_n =n!{1−e^(−1) −e^(−1) Σ_(k=1) ^n  (1/(k!))} ⇒  A_n =(2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))} ⇒  f(x)=−Σ_(n=1) ^∞ (2n)!{1−e^(−1) −e^(−1) Σ_(k=1) ^(2n)  (1/(k!))}(x^n /n)  =(e^(−1) −1)Σ_(n=1) ^∞ (((2n)!)/n) x^n  +e^(−1) Σ_(n=1) ^∞ (((2n)!)/n)(Σ_(k=1) ^(2n)  (1/(k!)))x^n   .....be continued....
1)wehaveln(1u)=11u=n=0unifu∣<1ln(1u)=n=0un+1n+1+c(c=0)ln(1u)=n=1unnwehavext2∣<1ln(1xt2)=n=1xnt2nnf(x)=01et(n=1xnt2nn)dt=n=1xnn01t2netdt=n=1AnxnnwithAn=01t2netdtletdeterminateIn=01tnetdtbypartsu=tnandv=etIn=[ettn]01+01ntn1etdt=e1+nIn1=nIn11e(n>0)letWn=Inn!Wn+1=In+1(n+1)!=(n+1)In1e(n+1)!=Inn!1e(n+1)!=Wn1e(n+1)!Wn+1Wn=1e(n+1)!k=0n1(Wk+1Wk)=1ek=0n11(k+1)!Wn=W01ek=1n1k!wehaveW0=I0=01etdt=[et]01=1e1Wn=1e11ek=1n1k!In=n!Wn=n!{1e1e1k=1n1k!}An=(2n)!{1e1e1k=12n1k!}f(x)=n=1(2n)!{1e1e1k=12n1k!}xnn=(e11)n=1(2n)!nxn+e1n=1(2n)!n(k=12n1k!)xn..becontinued.
Answered by mind is power last updated on 11/Nov/19
f(x)=[−e^(−t) ln(1−xt^2 )]_0 ^1 +∫_0 ^1 ((e^(−t) .−2xt)/(1−xt^2 ))dt  =−e^(−1) ln(1−x)−2x∫_0 ^1 .((te^(−t) dt)/((1−(√x)t)(1+(√x)t)))  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) .(1+t(√x)−(1−t(√x))))/((1−t(√x))(1+t(√x))))dt  =−e^(−1) ln(1−x)−(√x)∫_0 ^1 ((e^(−t) dt)/(1−t(√x)))+(√x)∫_0 ^1 ((e^(−t) dt)/(1+t(√x)))  let u=1−t(√x) in first and s=1+t(√x) in 2nd  =−e^(−1) ln(1−x)+∫_1 ^(1−(√x)) (e^((u−1)/( (√x))) /u)du+∫_1 ^(1+(√x)) (e^((1−s)/( (√x))) /s)ds  m=(u/( (√x))) in first m=(s/( (√x)))  in]2nd  =−e^(−1) ln(1−x)+∫^((1/( (√x)))−1) _(1/( (√x))) ((e^m .e^(−(1/( (√x)))) )/m).dm+∫_(1/( (√x))) ^(1+(1/( (√x)))) e^(1/( (√x))) .e^(−m) .(dm/m)346  We use  Ei(w)=∫_(−∞) ^w (e^x /x)dx=∫_∞ ^(−w) (e^(−x) /x)dx  Ei  is exponential integral function   we get −e^(−1) ln(1−x)+{Ei((1/( (√x)))−1)−Ei((1/( (√x))))}e^((−1)/( (√x))) +e^(1/( (√x))) {Ei(−1−(1/( (√x))))−Ei(−(1/( (√x))))}  ∫_0 ^1 e^(−t) ln(1−(t^2 /2))dt put x=(1/2)  =e^(−1) ln(2)+{Ei((1/( (√2)))−1)−Ei((1/( (√2))))}e^(−(1/( (√2)))) +e^(1/( (√2))) {Ei(−1−(1/( (√2))))−Ei((1/( (√2))))}
f(x)=[etln(1xt2)]01+01et.2xt1xt2dt=e1ln(1x)2x01.tetdt(1xt)(1+xt)=e1ln(1x)x01et.(1+tx(1tx))(1tx)(1+tx)dt=e1ln(1x)x01etdt1tx+x01etdt1+txletu=1txinfirstands=1+txin2nd=e1ln(1x)+11xeu1xudu+11+xe1sxsdsm=uxinfirstm=sxin]2nd=e1ln(1x)+1x1x1em.e1xm.dm+1x1+1xe1x.em.dmm346WeuseEi(w)=wexxdx=wexxdxEiisexponentialintegralfunctionwegete1ln(1x)+{Ei(1x1)Ei(1x)}e1x+e1x{Ei(11x)Ei(1x)}01etln(1t22)dtputx=12=e1ln(2)+{Ei(121)Ei(12)}e12+e12{Ei(112)Ei(12)}
Commented by mind is power last updated on 11/Nov/19
y′re welcom
yrewelcom
Commented by mathmax by abdo last updated on 11/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *