Menu Close

find-f-x-0-1-ln-x-e-t-dt-with-x-gt-0-




Question Number 67021 by mathmax by abdo last updated on 21/Aug/19
find f(x) =∫_0 ^1 ln(x +e^(−t) )dt   with x>0
findf(x)=01ln(x+et)dtwithx>0
Commented by mathmax by abdo last updated on 25/Aug/19
we have  f^′ (x) =∫_0 ^1   (dt/(x+e^(−t) ))dt =(1/x)∫_0 ^1  (dt/(1+(e^(−t) /x)))  if x>1  we have f^′ (x) =(1/x)∫_0 ^1  Σ_(n=0) ^∞  (−1)^n ((e^(−t) /x))^n   =Σ_(n=0) ^∞  (((−1)^n )/x^(n+1) ) ∫_0 ^1  e^(−nt) dt =(1/x)+Σ_(n=1) ^∞  (((−1)^n )/x^(n+1) )(−(1/n))[  e^(−nt) ]_0 ^1   =(1/x)−Σ_(n=1) ^∞   (((−1)^n )/(nx^(n+1) )){e^(−n) −1} =(1/x)−Σ_(n=1) ^∞   (((−e)^n )/(nx^(n+1) )) +Σ_(n=1) ^∞  (((−1)^n )/(nx^(n+1) )) ⇒  f(x) =ln(x)−Σ_(n=1) ^∞  (((−e)^n )/n) ∫_1 ^x  (dt/t^(n+1) ) +Σ_(n=1) ^∞  (((−1)^n )/n)∫_1 ^x  (dt/t^(n+1) ) +C  ∫_1 ^x  (dt/t^(n+1) ) =∫_1 ^x  t^(−n−1) dt =[(1/(−n))t^(−n) ]_1 ^x  =(1/n)(1−(1/x^n )) ⇒  f(x) =ln(x)−Σ_(n=1) ^∞  (((−e)^n )/n^2 )(1−(1/x^n ))+Σ_(n=1) ^∞  (((−1)^n )/n^2 )(1−(1/x^n ))+C  C =f(1) =∫_0 ^1 ln(1+e^(−t) )dt ⇒  f(x)=ln(x)−Σ_(n=1) ^∞ (((−e)^n )/n^2 ) +Σ_(n=1) ^∞  (((−e)^n )/(n^2 x^n )) +Σ_(n=1) ^∞  (((−1)^n )/n^2 )  −Σ_(n=1) ^∞   (((−1)^n )/(n^2  x^n ))     ....be continued....
wehavef(x)=01dtx+etdt=1x01dt1+etxifx>1wehavef(x)=1x01n=0(1)n(etx)n=n=0(1)nxn+101entdt=1x+n=1(1)nxn+1(1n)[ent]01=1xn=1(1)nnxn+1{en1}=1xn=1(e)nnxn+1+n=1(1)nnxn+1f(x)=ln(x)n=1(e)nn1xdttn+1+n=1(1)nn1xdttn+1+C1xdttn+1=1xtn1dt=[1ntn]1x=1n(11xn)f(x)=ln(x)n=1(e)nn2(11xn)+n=1(1)nn2(11xn)+CC=f(1)=01ln(1+et)dtf(x)=ln(x)n=1(e)nn2+n=1(e)nn2xn+n=1(1)nn2n=1(1)nn2xn.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *