find-f-x-0-1-ln-x-e-t-dt-with-x-gt-0- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67021 by mathmax by abdo last updated on 21/Aug/19 findf(x)=∫01ln(x+e−t)dtwithx>0 Commented by mathmax by abdo last updated on 25/Aug/19 wehavef′(x)=∫01dtx+e−tdt=1x∫01dt1+e−txifx>1wehavef′(x)=1x∫01∑n=0∞(−1)n(e−tx)n=∑n=0∞(−1)nxn+1∫01e−ntdt=1x+∑n=1∞(−1)nxn+1(−1n)[e−nt]01=1x−∑n=1∞(−1)nnxn+1{e−n−1}=1x−∑n=1∞(−e)nnxn+1+∑n=1∞(−1)nnxn+1⇒f(x)=ln(x)−∑n=1∞(−e)nn∫1xdttn+1+∑n=1∞(−1)nn∫1xdttn+1+C∫1xdttn+1=∫1xt−n−1dt=[1−nt−n]1x=1n(1−1xn)⇒f(x)=ln(x)−∑n=1∞(−e)nn2(1−1xn)+∑n=1∞(−1)nn2(1−1xn)+CC=f(1)=∫01ln(1+e−t)dt⇒f(x)=ln(x)−∑n=1∞(−e)nn2+∑n=1∞(−e)nn2xn+∑n=1∞(−1)nn2−∑n=1∞(−1)nn2xn….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-a-b-c-d-a-c-d-b-Next Next post: find-f-x-0-1-arctan-1-xt-dt-with-x-real- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.