Question Number 74513 by mathmax by abdo last updated on 25/Nov/19
$${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{xsin}\left(\mathrm{2}\theta\right)+\mathrm{1}}\:\:\left({x}\:{real}\right) \\ $$
Commented by mathmax by abdo last updated on 26/Nov/19
$${f}\left({x}\right)=_{\mathrm{2}\theta={t}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\frac{{dt}}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{2}{xsint}\:+\mathrm{1}\right)}\:\Rightarrow\mathrm{2}{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{x}^{\mathrm{2}} −\mathrm{2}{xsint}\:+\mathrm{1}} \\ $$$${changement}\:\:{e}^{{it}} ={z}\:{give} \\ $$$$\mathrm{2}{f}\left({x}\right)=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\frac{{z}−{z}^{−\mathrm{1}} }{\mathrm{2}{i}}+\mathrm{1}}\frac{{dz}}{{iz}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{{idz}}{{iz}\left({ix}^{\mathrm{2}} −{xz}+{xz}^{−\mathrm{1}} +{i}\right)}\:= \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{dz}}{{ix}^{\mathrm{2}} {z}−{xz}^{\mathrm{2}} +{x}\:+{iz}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{{dz}}{−{xz}^{\mathrm{2}} +{i}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){z}\:+{x}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{{dz}}{−{xz}^{\mathrm{2}} +{i}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){z}\:+{x}}\:=−\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{dz}}{{xz}^{\mathrm{2}} −{i}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){z}\:−{x}} \\ $$$${let}\:\varphi\left({z}\right)=\frac{\mathrm{1}}{{xz}^{\mathrm{2}} −{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right){z}\:−{x}}\:{pole}\:{of}\:\varphi? \\ $$$$\Delta=−\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{2}} \:=\mathrm{4}{x}^{\mathrm{2}} −\left({x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)=−{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$=−\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)\:=−\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} = \\ $$$${z}_{\mathrm{1}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{i}\mid{x}^{\mathrm{2}} −\mathrm{1}\mid}{\mathrm{2}{x}}\:\:{and}\:\:{z}_{\mathrm{2}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−{i}\mid{x}^{\mathrm{2}} −\mathrm{1}\mid}{\mathrm{2}{x}} \\ $$$${case}\:\mathrm{1}\:\:\:\:\:\mid{x}\mid<\mathrm{1}\:\Rightarrow{z}_{\mathrm{1}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{i}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{2}{x}}\:=\frac{{i}}{{x}} \\ $$$$\mid{z}_{\mathrm{1}} \mid=\frac{\mathrm{1}}{\mid{x}\mid}>\mathrm{1}\:\:\:\left({out}\:{of}\:{circle}\right) \\ $$$${z}_{\mathrm{2}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−{i}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{2}{x}}\:=\frac{\mathrm{2}{ix}^{\mathrm{2}} }{\mathrm{2}{x}}\:={ix}\:\Rightarrow\mid{z}_{\mathrm{2}} \mid=\mid{x}\mid<\mathrm{1} \\ $$$$\varphi\left({z}\right)=\frac{\mathrm{1}}{{x}\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:{and}\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{2}} \right) \\ $$$$=\mathrm{2}{i}\pi×\frac{\mathrm{1}}{{x}\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)}\:=\frac{\mathrm{2}\pi{i}}{{x}\left({ix}−\frac{{i}}{{x}}\right)}\:=\frac{\mathrm{2}\pi}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\:\Rightarrow\mathrm{2}{f}\left({x}\right)=\frac{−\mathrm{2}\pi}{{x}^{\mathrm{2}} −\mathrm{1}}\:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${case}\:\mathrm{2}\:\:\mid{x}\mid>\mathrm{1}\:\Rightarrow{z}_{\mathrm{1}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{i}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}{x}}\:={ix}\:\Rightarrow\mid{z}_{\mathrm{1}} \mid=\mid{x}\mid>\mathrm{1}\left({out}\:{of}\right. \\ $$$$\left.{circle}\right)\:\:{z}_{\mathrm{2}} =\frac{{i}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−{i}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}{x}}\:=\frac{{i}}{{x}}\:\Rightarrow\mid{z}_{\mathrm{2}} \mid=\frac{\mathrm{1}}{\mid{x}\mid}<\mathrm{1} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{z}_{\mathrm{2}} \right)\:=\mathrm{2}{i}\pi×\frac{\mathrm{1}}{{x}\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$=\frac{\mathrm{2}{i}\pi}{{x}\left(\frac{{i}}{{x}}−{ix}\right)}\:=\frac{\mathrm{2}\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow\mathrm{2}{f}\left({x}\right)=\frac{−\mathrm{2}\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:\Rightarrow{f}\left({x}\right)=\frac{\pi}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${finally}\:\:\:\:{f}\left({x}\right)=\frac{\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:{if}\:\mid{x}\mid<\mathrm{1}\:{and}\:{f}\left({x}\right)=\frac{\pi}{{x}^{\mathrm{2}} −\mathrm{1}}\:{if}\:\mid{x}\mid>\mathrm{1} \\ $$
Answered by mind is power last updated on 25/Nov/19
$${f}\left({x}\right)=\underset{\mathrm{0}} {\int}^{\pi} \frac{{d}\theta}{\left({x}−{sin}\left(\mathrm{2}\theta\right)\right)^{\mathrm{2}} +{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)} \\ $$$${x}\neq\mathrm{1} \\ $$$${since}\:\mathrm{2}−\mathrm{2}{sin}\left(\mathrm{2}\theta\right)\:=\mathrm{0}\:{for}\:\theta=\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({x}\right)={f}\left(−{x}\right)\:\:{we}\:{suppose}\:{x}\geqslant\mathrm{0} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({x}−{sin}\left(\mathrm{2}\theta\right)−{icos}\left(\theta\right)\right)\left({x}−{sin}\left(\mathrm{2}\theta\right)+{icos}\left(\mathrm{2}\theta\right)\right)} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({x}−{ie}^{−{i}\mathrm{2}\theta} \right)\left({x}+{ie}^{{i}\mathrm{2}\theta} \right)} \\ $$$${z}={e}^{\mathrm{2}{i}\theta} \Rightarrow{dz}=\mathrm{2}{ie}^{\mathrm{2}{i}\theta} {d}\theta \\ $$$$=\int_{{C}} \frac{{dz}}{\mathrm{2}{iz}\left({x}−\frac{{i}}{{z}}\right)\left({x}+{iz}\right)}=\int_{{C}} \frac{{dz}}{\mathrm{2}{i}\left({xz}−{i}\right)\left({x}+{iz}\right)} \\ $$$${poles}\:{are}\:\frac{{i}}{{x}},−{ix} \\ $$$${if}\:\:{x}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\pi \\ $$$${f}\left(−\mathrm{1}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\mathrm{2}+\mathrm{2}{sin}\left(\mathrm{2}\theta\right)}=\frac{{d}\theta}{\mathrm{2}\left(\mathrm{1}+\mathrm{2}{sin}\left(\theta\right){cos}\left(\theta\right)\right)} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+{tg}^{\mathrm{2}} \left(\theta\right)}{\mathrm{2}\left(\mathrm{1}+{tg}\left(\theta\right)\right)^{\mathrm{2}} }{d}\theta+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \\ $$$$=\left[−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{tg}\left(\theta\right)\right.}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\left[\frac{−\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{tg}\left(\theta\right)\right)}\right]_{\frac{\pi}{\mathrm{2}}} ^{\pi} =\mathrm{0} \\ $$$${if}\:\:\:\:\:\:\mid{x}\mid>\mathrm{1}\Rightarrow\mid\frac{{i}}{{x}}\mid<\mathrm{1}\in{C} \\ $$$${f}\left({x}\right)=\pi.{Res}\left(\frac{\mathrm{1}}{\left({xz}−{i}\right)\left({x}+{iz}\right)},{z}=\frac{{i}}{{x}}\right) \\ $$$$=\pi.\frac{{x}}{{x}^{\mathrm{2}} −\mathrm{1}}\:{x}>\mathrm{1} \\ $$$$\mid{x}\mid<\mathrm{1}\Rightarrow\mid−{ix}\mid<\mathrm{1}\Rightarrow{f}\left({x}\right)=\pi{Res}\left(\frac{\mathrm{1}}{\left({xz}−{i}\right)\left({x}+{iz}\right)},{z}={ix}\right\} \\ $$$$ \\ $$$$=\frac{\pi}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:\:\mid{x}\mid<\mathrm{1} \\ $$$$ \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 26/Nov/19
$${thankx}\:{sir}. \\ $$
Commented by mind is power last updated on 26/Nov/19
$${y}'{re}\:{welcom} \\ $$