Menu Close

find-f-x-0-pi-d-x-2-2xsin-2-1-x-real-




Question Number 74513 by mathmax by abdo last updated on 25/Nov/19
find f(x)=∫_0 ^π   (dθ/(x^2 −2xsin(2θ)+1))  (x real)
findf(x)=0πdθx22xsin(2θ)+1(xreal)
Commented by mathmax by abdo last updated on 26/Nov/19
f(x)=_(2θ=t)     ∫_0 ^(2π)      (dt/(2(x^2 −2xsint +1))) ⇒2f(x)=∫_0 ^(2π)   (dt/(x^2 −2xsint +1))  changement  e^(it) =z give  2f(x)=∫_(∣z∣=1)      (1/(x^2 −2x((z−z^(−1) )/(2i))+1))(dz/(iz))  =∫_(∣z∣=1)     ((idz)/(iz(ix^2 −xz+xz^(−1) +i))) =  =∫_(∣z∣=1)    (dz/(ix^2 z−xz^2 +x +iz)) =∫_(∣z∣=1)   (dz/(−xz^2 +i(1+x^2 )z +x))  =∫_(∣z∣=1)   (dz/(−xz^2 +i(1+x^2 )z +x)) =−∫_(∣z∣=1)    (dz/(xz^2 −i(1+x^2 )z −x))  let ϕ(z)=(1/(xz^2 −i(x^2 +1)z −x)) pole of ϕ?  Δ=−(x^2 +1)^2 +4x^2  =4x^2 −(x^4 +2x^2 +1)=−x^4 +2x^2 −1  =−(x^4 −2x^2 +1) =−(x^2 −1)^2 =  z_1 =((i(x^2 +1)+i∣x^2 −1∣)/(2x))  and  z_2 =((i(x^2 +1)−i∣x^2 −1∣)/(2x))  case 1     ∣x∣<1 ⇒z_1 =((i(x^2 +1)+i(1−x^2 ))/(2x)) =(i/x)  ∣z_1 ∣=(1/(∣x∣))>1   (out of circle)  z_2 =((i(x^2 +1)−i(1−x^2 ))/(2x)) =((2ix^2 )/(2x)) =ix ⇒∣z_2 ∣=∣x∣<1  ϕ(z)=(1/(x(z−z_1 )(z−z_2 ))) and ∫_(∣z∣=1)    ϕ(z)dz=2iπ Res(ϕ,z_2 )  =2iπ×(1/(x(z_2 −z_1 ))) =((2πi)/(x(ix−(i/x)))) =((2π)/((x^2 −1))) ⇒2f(x)=((−2π)/(x^2 −1)) ⇒  f(x)=(π/(1−x^2 ))   with ∣x∣<1  case 2  ∣x∣>1 ⇒z_1 =((i(x^2 +1)+i(x^2 −1))/(2x)) =ix ⇒∣z_1 ∣=∣x∣>1(out of  circle)  z_2 =((i(x^2 +1)−i(x^2 −1))/(2x)) =(i/x) ⇒∣z_2 ∣=(1/(∣x∣))<1  ∫_(∣z∣=1)   ϕ(z)dz =2iπRes(ϕ,z_2 ) =2iπ×(1/(x(z_2 −z_1 )))  =((2iπ)/(x((i/x)−ix))) =((2π)/(1−x^2 )) ⇒2f(x)=((−2π)/(1−x^2 )) ⇒f(x)=(π/(x^2 −1))  finally    f(x)=(π/(1−x^2 ))  if ∣x∣<1 and f(x)=(π/(x^2 −1)) if ∣x∣>1
f(x)=2θ=t02πdt2(x22xsint+1)2f(x)=02πdtx22xsint+1changementeit=zgive2f(x)=z∣=11x22xzz12i+1dziz=z∣=1idziz(ix2xz+xz1+i)==z∣=1dzix2zxz2+x+iz=z∣=1dzxz2+i(1+x2)z+x=z∣=1dzxz2+i(1+x2)z+x=z∣=1dzxz2i(1+x2)zxletφ(z)=1xz2i(x2+1)zxpoleofφ?Δ=(x2+1)2+4x2=4x2(x4+2x2+1)=x4+2x21=(x42x2+1)=(x21)2=z1=i(x2+1)+ix212xandz2=i(x2+1)ix212xcase1x∣<1z1=i(x2+1)+i(1x2)2x=ixz1∣=1x>1(outofcircle)z2=i(x2+1)i(1x2)2x=2ix22x=ix⇒∣z2∣=∣x∣<1φ(z)=1x(zz1)(zz2)andz∣=1φ(z)dz=2iπRes(φ,z2)=2iπ×1x(z2z1)=2πix(ixix)=2π(x21)2f(x)=2πx21f(x)=π1x2withx∣<1case2x∣>1z1=i(x2+1)+i(x21)2x=ix⇒∣z1∣=∣x∣>1(outofcircle)z2=i(x2+1)i(x21)2x=ix⇒∣z2∣=1x<1z∣=1φ(z)dz=2iπRes(φ,z2)=2iπ×1x(z2z1)=2iπx(ixix)=2π1x22f(x)=2π1x2f(x)=πx21finallyf(x)=π1x2ifx∣<1andf(x)=πx21ifx∣>1
Answered by mind is power last updated on 25/Nov/19
f(x)=∫^π _0 (dθ/((x−sin(2θ))^2 +cos^2 (2θ)))  x≠1  since 2−2sin(2θ) =0 for θ=(π/2)  f(x)=f(−x)  we suppose x≥0  =∫_0 ^π (dθ/((x−sin(2θ)−icos(θ))(x−sin(2θ)+icos(2θ))))  =∫_0 ^π (dθ/((x−ie^(−i2θ) )(x+ie^(i2θ) )))  z=e^(2iθ) ⇒dz=2ie^(2iθ) dθ  =∫_C (dz/(2iz(x−(i/z))(x+iz)))=∫_C (dz/(2i(xz−i)(x+iz)))  poles are (i/x),−ix  if  x=0  f(0)=π  f(−1)=∫_0 ^π (dθ/(2+2sin(2θ)))=(dθ/(2(1+2sin(θ)cos(θ))))  =∫_0 ^(π/2) ((1+tg^2 (θ))/(2(1+tg(θ))^2 ))dθ+∫_(π/2) ^π   =[−(1/(2(1+tg(θ)))]_0 ^(π/2) +[((−1)/(2(1+tg(θ))))]_(π/2) ^π =0  if      ∣x∣>1⇒∣(i/x)∣<1∈C  f(x)=π.Res((1/((xz−i)(x+iz))),z=(i/x))  =π.(x/(x^2 −1)) x>1  ∣x∣<1⇒∣−ix∣<1⇒f(x)=πRes((1/((xz−i)(x+iz))),z=ix}    =(π/(1−x^2 ))    ∣x∣<1
f(x)=0πdθ(xsin(2θ))2+cos2(2θ)x1since22sin(2θ)=0forθ=π2f(x)=f(x)wesupposex0=0πdθ(xsin(2θ)icos(θ))(xsin(2θ)+icos(2θ))=0πdθ(xiei2θ)(x+iei2θ)z=e2iθdz=2ie2iθdθ=Cdz2iz(xiz)(x+iz)=Cdz2i(xzi)(x+iz)polesareix,ixifx=0f(0)=πf(1)=0πdθ2+2sin(2θ)=dθ2(1+2sin(θ)cos(θ))=0π21+tg2(θ)2(1+tg(θ))2dθ+π2π=[12(1+tg(θ)]0π2+[12(1+tg(θ))]π2π=0ifx∣>1⇒∣ix∣<1Cf(x)=π.Res(1(xzi)(x+iz),z=ix)=π.xx21x>1x∣<1⇒∣ix∣<1f(x)=πRes(1(xzi)(x+iz),z=ix}=π1x2x∣<1
Commented by mathmax by abdo last updated on 26/Nov/19
thankx sir.
thankxsir.
Commented by mind is power last updated on 26/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *