Menu Close

find-f-x-dt-t-2-xt-1-with-x-real-




Question Number 76356 by mathmax by abdo last updated on 26/Dec/19
find f(x) =∫  (dt/( (√(t^2 −xt +1))))  with x real.
findf(x)=dtt2xt+1withxreal.
Commented by mathmax by abdo last updated on 28/Dec/19
t^2 −xt +1 →Δ=x^2 −4  case 1  ∣x∣<2 ⇒Δ<0 ⇒t^2 −xt+1 =t^2 −2(x/2)t +(x^2 /4) +1−(x^2 /4)  =(t−(x/2))^2  +((4−x^2 )/4)  we do the changement t−(x/2)=((√(4−x^2 ))/2) u⇒  f(x) =∫  (1/( (√((4−x^2 )/4))((√(1+u^2 )))))((√(4−x^2 ))/2)du =∫  (du/( (√(1+u^2 ))))  =ln(u+(√(1+u^2 ))) +c =ln(((2t−x)/( (√(4−x^2 ))))+(√(1+(((2t−x)/( (√(4−x^2 )))))^2 )))  +c  case 2 ∣x∣>2 ⇒Δ>0 ⇒t_1 =((x+(√(x^2 −4)))/2) and t_2 =((x−(√(x^2 −4)))/2)  f(x)=∫  (dt/( (√((t−t_1 )(t−t_2 ))))) [we do the changement (√(t−t_1 ))=u ⇒  t=u^2  +t_1  ⇒f(x) =∫  ((2udu)/(u(√(u^2  +t_1 −t_2 ))))  =2 ∫  (du/( (√(u^2 +(√(x^2 −4)))))) =_(u=(x^2 −4)^(1/4) z)  2 ∫  (((x^2 −4)^(1/4) dz)/( (√((√(x^2 −4))(z^2 +1)))))  =2 ∫  (dz/( (√(z^2  +1)))) =2ln(z+(√(1+z^2 ))) +C  =2ln((x^2 −4)^(−(1/4)) u +(√(1+(x^2 −4)^(−(1/2)) u^2 ))) +C  =2ln{(x^2 −4)(√(t−t_1 )) +(√(1+(x^2 −4)^(−(1/2)) (t−t_1 ))))} +C
t2xt+1Δ=x24case1x∣<2Δ<0t2xt+1=t22x2t+x24+1x24=(tx2)2+4x24wedothechangementtx2=4x22uf(x)=14x24(1+u2)4x22du=du1+u2=ln(u+1+u2)+c=ln(2tx4x2+1+(2tx4x2)2)+ccase2x∣>2Δ>0t1=x+x242andt2=xx242f(x)=dt(tt1)(tt2)[wedothechangementtt1=ut=u2+t1f(x)=2uduuu2+t1t2=2duu2+x24=u=(x24)14z2(x24)14dzx24(z2+1)=2dzz2+1=2ln(z+1+z2)+C=2ln((x24)14u+1+(x24)12u2)+C=2ln{(x24)tt1+1+(x24)12(tt1))}+C

Leave a Reply

Your email address will not be published. Required fields are marked *