find-f-x-dt-t-2-xt-1-with-x-real- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 76356 by mathmax by abdo last updated on 26/Dec/19 findf(x)=∫dtt2−xt+1withxreal. Commented by mathmax by abdo last updated on 28/Dec/19 t2−xt+1→Δ=x2−4case1∣x∣<2⇒Δ<0⇒t2−xt+1=t2−2x2t+x24+1−x24=(t−x2)2+4−x24wedothechangementt−x2=4−x22u⇒f(x)=∫14−x24(1+u2)4−x22du=∫du1+u2=ln(u+1+u2)+c=ln(2t−x4−x2+1+(2t−x4−x2)2)+ccase2∣x∣>2⇒Δ>0⇒t1=x+x2−42andt2=x−x2−42f(x)=∫dt(t−t1)(t−t2)[wedothechangementt−t1=u⇒t=u2+t1⇒f(x)=∫2uduuu2+t1−t2=2∫duu2+x2−4=u=(x2−4)14z2∫(x2−4)14dzx2−4(z2+1)=2∫dzz2+1=2ln(z+1+z2)+C=2ln((x2−4)−14u+1+(x2−4)−12u2)+C=2ln{(x2−4)t−t1+1+(x2−4)−12(t−t1))}+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-arctan-1-n-2-n-Next Next post: let-A-1-1-1-1-1-calculate-A-n-2-find-e-A-e-A-3-find-sinA-and-cosA-4-find-ch-A-and-sh-A- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.