Question Number 76356 by mathmax by abdo last updated on 26/Dec/19
$${find}\:{f}\left({x}\right)\:=\int\:\:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} −{xt}\:+\mathrm{1}}}\:\:{with}\:{x}\:{real}. \\ $$
Commented by mathmax by abdo last updated on 28/Dec/19
$${t}^{\mathrm{2}} −{xt}\:+\mathrm{1}\:\rightarrow\Delta={x}^{\mathrm{2}} −\mathrm{4} \\ $$$${case}\:\mathrm{1}\:\:\mid{x}\mid<\mathrm{2}\:\Rightarrow\Delta<\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} −{xt}+\mathrm{1}\:={t}^{\mathrm{2}} −\mathrm{2}\frac{{x}}{\mathrm{2}}{t}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\left({t}−\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}−{x}^{\mathrm{2}} }{\mathrm{4}}\:\:{we}\:{do}\:{the}\:{changement}\:{t}−\frac{{x}}{\mathrm{2}}=\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}}\:{u}\Rightarrow \\ $$$${f}\left({x}\right)\:=\int\:\:\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{4}−{x}^{\mathrm{2}} }{\mathrm{4}}}\left(\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right)}\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}{\mathrm{2}}{du}\:=\int\:\:\frac{{du}}{\:\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} \\ $$$$={ln}\left({u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right)\:+{c}\:={ln}\left(\frac{\mathrm{2}{t}−{x}}{\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{t}−{x}}{\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}\right)^{\mathrm{2}} }\right)\:\:+{c} \\ $$$${case}\:\mathrm{2}\:\mid{x}\mid>\mathrm{2}\:\Rightarrow\Delta>\mathrm{0}\:\Rightarrow{t}_{\mathrm{1}} =\frac{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\:{and}\:{t}_{\mathrm{2}} =\frac{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\int\:\:\frac{{dt}}{\:\sqrt{\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)}}\:\left[{we}\:{do}\:{the}\:{changement}\:\sqrt{{t}−{t}_{\mathrm{1}} }={u}\:\Rightarrow\right. \\ $$$${t}={u}^{\mathrm{2}} \:+{t}_{\mathrm{1}} \:\Rightarrow{f}\left({x}\right)\:=\int\:\:\frac{\mathrm{2}{udu}}{{u}\sqrt{{u}^{\mathrm{2}} \:+{t}_{\mathrm{1}} −{t}_{\mathrm{2}} }} \\ $$$$=\mathrm{2}\:\int\:\:\frac{{du}}{\:\sqrt{{u}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}}\:=_{{u}=\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {z}} \:\mathrm{2}\:\int\:\:\frac{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {dz}}{\:\sqrt{\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$=\mathrm{2}\:\int\:\:\frac{{dz}}{\:\sqrt{{z}^{\mathrm{2}} \:+\mathrm{1}}}\:=\mathrm{2}{ln}\left({z}+\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }\right)\:+{C} \\ $$$$=\mathrm{2}{ln}\left(\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{4}}} {u}\:+\sqrt{\mathrm{1}+\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {u}^{\mathrm{2}} }\right)\:+{C} \\ $$$$\left.=\mathrm{2}{ln}\left\{\left({x}^{\mathrm{2}} −\mathrm{4}\right)\sqrt{{t}−{t}_{\mathrm{1}} }\:+\sqrt{\mathrm{1}+\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \left({t}−{t}_{\mathrm{1}} \right)}\right)\right\}\:+{C} \\ $$$$ \\ $$