Menu Close

Find-Find-K-0-pi-2-tan-d-




Question Number 67463 by ~ À ® @ 237 ~ last updated on 27/Aug/19
Find  Find   K=∫_0 ^(π/2) (√(tanθ)) dθ
FindFindK=0π2tanθdθ
Commented by ~ À ® @ 237 ~ last updated on 27/Aug/19
  Using B(x,y)=2∫_0_  ^(π/2) (sinθ)^(2x−1) (cosθ)^(2y−1) dθ=((Γ(x)Γ(y))/(Γ(x+y)))   2K= 2∫_0 ^(π/2) (sinθ)^(1/2) (cosθ)^((−1)/2) dθ=2∫_0 ^(π/2) (sinθ)^(2((3/4))−1) (cosθ)^(2((1/4))−1) dθ        = B((3/4),(1/4))=((Γ((3/4))Γ((1/4)))/(Γ(1)))=(π/(sin(((3π)/4))))=π(√(2 ))      using  complements formulas Γ(x)Γ(1−x)=(π/(sin(πx)))   So  K=(π/( (√2) ))
UsingB(x,y)=20π2(sinθ)2x1(cosθ)2y1dθ=Γ(x)Γ(y)Γ(x+y)2K=20π2(sinθ)12(cosθ)12dθ=20π2(sinθ)2(34)1(cosθ)2(14)1dθ=B(34,14)=Γ(34)Γ(14)Γ(1)=πsin(3π4)=π2usingcomplementsformulasΓ(x)Γ(1x)=πsin(πx)SoK=π2
Commented by mathmax by abdo last updated on 27/Aug/19
let  A =∫_0 ^(π/2)  (√(tanθ))dθ   cha7gement (√(tanθ))=t give tanθ =t^2  ⇒  θ =arctan(t^2 ) ⇒ A =∫_0 ^∞    ((t 2t)/(1+t^4 ))dt  =2 ∫_0 ^∞   (t^2 /(1+t^4 ))dt     changement t =x^(1/4)  give A =2 ∫_0 ^∞  (x^(1/2) /(1+x))×(1/4)x^((1/4)−1) dx  =(1/2) ∫_0 ^∞   (x^((1/2)+(1/4)−1) /(1+x))dx =(1/2)∫_0 ^∞  (x^((3/4)−1) /(1+x))dx =(1/2)×(π/(sin(((3π)/4))))  =(π/(2×((√2)/2))) =(π/( (√2))) ⇒ ★ ∫_0 ^(π/2) (√(tanθ))dθ =(π/( (√2))) ★  i have used the result ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa))) if  0<a<1.
letA=0π2tanθdθcha7gementtanθ=tgivetanθ=t2θ=arctan(t2)A=0t2t1+t4dt=20t21+t4dtchangementt=x14giveA=20x121+x×14x141dx=120x12+1411+xdx=120x3411+xdx=12×πsin(3π4)=π2×22=π20π2tanθdθ=π2ihaveusedtheresult0ta11+tdt=πsin(πa)if0<a<1.
Commented by ~ À ® @ 237 ~ last updated on 27/Aug/19
thanks sir
thankssir
Answered by Kunal12588 last updated on 27/Aug/19
I=∫(√(tan x)) dx  let (√(tan x))=t  ⇒[(1/(2(√(tan x))))×(1+tan^2 x)]dx=dt  ⇒dx=((2t)/(1+t^4 ))dt  I=∫((2t^2 )/(1+t^4 )) dt=∫ ((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt + ∫ ((1−(1/t^2 ))/(t^2 +(1/t^2 )))dt  =∫((d(t−(1/t)))/((t−(1/t))^2 +((√2))^2 ))+∫((d(t+(1/t)))/((t+(1/t))^2 −((√2))^2 ))  =(1/( (√2)))tan^(−1) (((t^2 −1)/(t(√2))))+(1/(2(√2)))log∣((t^2 −(√2)t+1)/(t^2 +(√2)t+1))∣+C  =(1/( (√2)))tan^(−1) (((tan x−1)/( (√(2tan x)))))+(1/(2(√2)))log∣((tan x−(√(2tan x))+1)/(tan x+(√(2tan x))+1))∣+C  ∫_0 ^(π/2) (√(tan x))dx=∫_0 ^∞ ((2t^2 )/(1+t^4 ))dt  lim_(t→∞) {(1/( (√2)))tan^(−1) ((t/( (√2)))−(1/(t(√2))))+(1/(2(√2)))log∣((1−((√2)/t)+(1/t^2 ))/(1+((√2)/t)+(1/t^2 )))∣+C}  =(π/(2(√2)))  lim_(t→0) {(1/( (√2)))tan^(−1) (((t^2 −1)/(t(√2))))+(1/(2(√2)))log∣((t^2 −(√2)t+1)/(t^2 +(√2)t+1))∣+C}  =−(π/(2(√2)))  ∫_0 ^(π/2) (√(tan x))dx=(π/(2(√2)))+(π/(2(√2)))=(π/( (√2)))=((π(√2))/2)
I=tanxdxlettanx=t[12tanx×(1+tan2x)]dx=dtdx=2t1+t4dtI=2t21+t4dt=1+1t2t2+1t2dt+11t2t2+1t2dt=d(t1t)(t1t)2+(2)2+d(t+1t)(t+1t)2(2)2=12tan1(t21t2)+122logt22t+1t2+2t+1+C=12tan1(tanx12tanx)+122logtanx2tanx+1tanx+2tanx+1+C0π2tanxdx=02t21+t4dtlimt{12tan1(t21t2)+122log12t+1t21+2t+1t2+C}=π22limt0{12tan1(t21t2)+122logt22t+1t2+2t+1+C}=π220π2tanxdx=π22+π22=π2=π22
Commented by ~ À ® @ 237 ~ last updated on 27/Aug/19
Thanks you sir
Thanksyousir

Leave a Reply

Your email address will not be published. Required fields are marked *