find-k-1-n-k-C-n-k-2-interms-of-n- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 72389 by mathmax by abdo last updated on 28/Oct/19 find∑k=1nk(Cnk)2intermsofn Answered by mind is power last updated on 28/Oct/19 P(x)=(1+teix)nQ(x)=(1+te−ix)np(x).Q(x)=(t2+2tcos(x)+1)nP(x)=∑nk=0Cnk.tkeikxQ(x)=∑nl=0Cnltle−ilxP(x,t).Q(x,t)=∑nk=0.∑nl=0.Cnk.Cnltkei(k−l)x∫02πei(k−l)xdx={0ifk≠l2πifk=l∫02πP(x,t).Q(x,t)dx=∫02π∑nk=0.∑nl=0.Cnk.Cnltk+l.ei(k−l)xdx∫02πP(x,t).Q(x,t)dx∑k∑lCnk.Cnl∫02πtk+lei(k−l)xdx=2π∑nk=1t2k(Cnk)2Q(t)=∫02πp(x,t)Q(x,t)dx=2π∑nk=1t2k(Cnk)2Q′(t)∣t=1=2π∑nk=1.2kt2k−1.(Cnk)2∣t=1=4π∑nk=1k(Cnk)2p(x,t).Q(x,t)=(t2+2cos(x)t+1)nQ′(1)=∫02π.ddt(t2+2cos(x)t+1)n∣t=1dx=∫02π(2t+2cos(x))n.(t2+2cos(x)t+1)n−1∣t=1dx=n∫02π(2+2cos(x))(2+2cos(x))n−1=n2n∫02π(1+cos(x))ndx1+cos(x)=2cos2(x2)−1=n2n∫02π(2ncos2n(x2))dxx2=t=2n.4n∫0πcos2n(t)dt=4n.4n∫0π2cos2n(t)dt=byWalisintegralwegetn.4n+1∫0π2cos2n(t)dt=n.4n+1W2n=4π.∑nk=1k(Cnk)2⇒∑nk=1k(Cnk)2=n.4nW2nπ Commented by mathmax by abdo last updated on 29/Oct/19 thankyousir. Commented by mind is power last updated on 29/Oct/19 y′reWelcom Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-16-find-the-value-of-x-Next Next post: 0-2-x-2-cos-xdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.