Menu Close

find-k-1-n-k-C-n-k-2-interms-of-n-




Question Number 72389 by mathmax by abdo last updated on 28/Oct/19
find Σ_(k=1) ^n k(C_n ^k )^2  interms of n
findk=1nk(Cnk)2intermsofn
Answered by mind is power last updated on 28/Oct/19
 P(x)=(1+te^(ix) )^n   Q(x)=(1+te^(−ix) )^n   p(x).Q(x)=(t^2 +2tcos(x)+1)^n   P(x)=Σ_(k=0) ^n C_n ^k .t^k e^(ikx)   Q(x)=Σ_(l=0) ^n C_n ^l t^l e^(−ilx)   P(x,t).Q(x,t)=Σ_(k=0) ^n .Σ_(l=0) ^n .C_n ^k .C_n ^l t^k e^(i(k−l)x)   ∫_0 ^(2π) e^(i(k−l)x) dx= { ((0 if k≠l)),((2π if k=l)) :}  ∫_0 ^(2π) P(x,t).Q(x,t)dx=∫_0 ^(2π) Σ_(k=0) ^n .Σ_(l=0) ^n .C_n ^k .C_n ^l t^(k+l) .e_ ^(i(k−l)x) dx  ∫_0 ^(2π) P(x,t).Q(x,t)dxΣ_k Σ_l C_n ^k .C_n ^l ∫_0 ^(2π) t^(k+l) e^(i(k−l)x) dx=2πΣ_(k=1) ^n t^(2k) (C_n ^k )^2   Q(t)=∫_0 ^(2π) p(x,t)Q(x,t)dx=2πΣ_(k=1) ^n t^(2k) (C_n ^k )^2   Q′(t)∣_(t=1) =2πΣ_(k=1) ^n .2kt^(2k−1) .(C_n ^k )^2 ∣_(t=1) =4πΣ_(k=1) ^n k(C_n ^k )^2   p(x,t).Q(x,t)=(t^2 +2cos(x)t+1)^n   Q′(1)=∫_0 ^(2π) .(d/dt)(t^2 +2cos(x)t+1)^n ∣t=1   dx  =∫_0 ^(2π) (2t+2cos(x))n.(t^2 +2cos(x)t+1)^(n−1) ∣_(t=1) dx  =n∫_0 ^(2π) (2+2cos(x))(2+2cos(x))^(n−1) =n2^n ∫_0 ^(2π) (1+cos(x))^n dx  1+cos(x)=2cos^2 ((x/2))−1  =n2^n ∫_0 ^(2π) (2^n cos^(2n) ((x/2)))dx   (x/2)=t  =2n.4^n ∫_0 ^π cos^(2n) (t)dt=4n.4^n ∫_0 ^(π/2) cos^(2n) (t)dt=  by Walis integral we get    n.4^(n+1) ∫_0 ^(π/2) cos^(2n) (t)dt=n.4^(n+1) W_(2n) =4π.Σ_(k=1) ^n k(C_n ^k )^2   ⇒Σ_(k=1) ^n k(C_n ^k )^2 =((n.4^n W_(2n) )/π)
P(x)=(1+teix)nQ(x)=(1+teix)np(x).Q(x)=(t2+2tcos(x)+1)nP(x)=nk=0Cnk.tkeikxQ(x)=nl=0CnltleilxP(x,t).Q(x,t)=nk=0.nl=0.Cnk.Cnltkei(kl)x02πei(kl)xdx={0ifkl2πifk=l02πP(x,t).Q(x,t)dx=02πnk=0.nl=0.Cnk.Cnltk+l.ei(kl)xdx02πP(x,t).Q(x,t)dxklCnk.Cnl02πtk+lei(kl)xdx=2πnk=1t2k(Cnk)2Q(t)=02πp(x,t)Q(x,t)dx=2πnk=1t2k(Cnk)2Q(t)t=1=2πnk=1.2kt2k1.(Cnk)2t=1=4πnk=1k(Cnk)2p(x,t).Q(x,t)=(t2+2cos(x)t+1)nQ(1)=02π.ddt(t2+2cos(x)t+1)nt=1dx=02π(2t+2cos(x))n.(t2+2cos(x)t+1)n1t=1dx=n02π(2+2cos(x))(2+2cos(x))n1=n2n02π(1+cos(x))ndx1+cos(x)=2cos2(x2)1=n2n02π(2ncos2n(x2))dxx2=t=2n.4n0πcos2n(t)dt=4n.4n0π2cos2n(t)dt=byWalisintegralwegetn.4n+10π2cos2n(t)dt=n.4n+1W2n=4π.nk=1k(Cnk)2nk=1k(Cnk)2=n.4nW2nπ
Commented by mathmax by abdo last updated on 29/Oct/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 29/Oct/19
y′re Welcom
yreWelcom

Leave a Reply

Your email address will not be published. Required fields are marked *