Menu Close

find-lim-n-0-n-1-x-n-n-lnx-dx-




Question Number 133127 by abdomsup last updated on 19/Feb/21
find lim_(n→∞) ∫_0 ^n (1−(x/n))^n lnx dx
$${find}\:{lim}_{{n}\rightarrow\infty} \int_{\mathrm{0}} ^{{n}} \left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {lnx}\:{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 19/Feb/21
lim_(n→∞) (1−(x/n))^n =e^(−x)   =lim_(n→∞) ∫_0 ^n e^(−x) log(x)dx=∫_0 ^∞ e^(−x) log(x)dx=Γ′(1)=Γ(1)ψ(1)  =−γ
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} ={e}^{−{x}} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{n}} {e}^{−{x}} {log}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {log}\left({x}\right){dx}=\Gamma'\left(\mathrm{1}\right)=\Gamma\left(\mathrm{1}\right)\psi\left(\mathrm{1}\right) \\ $$$$=−\gamma \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *