Menu Close

find-lim-n-1-i-lt-j-n-1-ij-2-




Question Number 72023 by mathmax by abdo last updated on 23/Oct/19
find lim_(n→+∞)    Σ_(1≤i<j≤n)   (1/((ij)^2 ))
findlimn+1i<jn1(ij)2
Commented by mathmax by abdo last updated on 24/Oct/19
wehave (Σ_(i=1) ^n x_i )^2 =Σ_(i=1) ^n  x_i ^2  +2Σ_(1≤i<j≤n)   x_i x_j   let x_i =(1/i^2 ) ⇒(Σ_(i=1) ^n  (1/i^2 ))^2 =Σ_(i=1) ^n  (1/i^4 ) +2Σ_(1≤i<j≤n)   (1/i^2 )×(1/j^2 )  ⇒lim_(n→+∞) (Σ_(i=1) ^n  (1/i^2 ))^2 =lim_(n→+∞) Σ_(i=1) ^n  (1/i^4 ) +2lim_(n→+∞) Σ_(1≤i<j≤n) (1/((ij)^2 )) ⇒  2lim_(n→+∞)  Σ_(1≤i<j≤n)   (1/((ij)^2 ))  =(Σ_(i=1) ^∞ (1/i^2 ))^2 −Σ_(n=1) ^∞  (1/i^4 )  =((π^2 /6))^2 −ξ(4) =(π^4 /(36)) −ξ(4) ⇒  lim_(n→+∞) Σ_(1≤i<j≤n)   (1/((ij)^2 )) =(π^4 /(72)) −((ξ(4))/2)
wehave(i=1nxi)2=i=1nxi2+21i<jnxixjletxi=1i2(i=1n1i2)2=i=1n1i4+21i<jn1i2×1j2limn+(i=1n1i2)2=limn+i=1n1i4+2limn+1i<jn1(ij)22limn+1i<jn1(ij)2=(i=11i2)2n=11i4=(π26)2ξ(4)=π436ξ(4)limn+1i<jn1(ij)2=π472ξ(4)2
Answered by mind is power last updated on 23/Oct/19
Σ_(1≤i<j≤n) =Σ_(j=2) ^n (1/j^2 )Σ_(i=1) ^(j−1) (1/i^2 )  Σ_(1≤j<i≤n) (1/((ij)^2 ))=Σ_(1≤i<j≤n) (1/((ij)^2 ))  Σ_(j,i=1) ^n (1/((ij)^2 ))=Σ_(i=1) ^n (1/i^2 ).Σ_(j=1) ^n (1/j^2 )  Σ_(1≤j<i≤n) (1/((ij)^2 ))+Σ_(1≤i<j≤n) (1/((ij)^2 ))+Σ_(i=j=1) ^n (1/((ij)^2 ))+Σ_(i=1) ^n (1/i^2 )Σ_(j=1) ^n (1/j^2 )    2Σ_(1≤i<j≤n) (1/((ij)^2 ))=Σ_(i=1) ^n (1/i^2 ).Σ_(j.1) ^n (1/j^2 )−Σ_1 ^n (1/j^4 )  2Σ_(1≤i<j≤n) (1/((ij)^2 ))=(ζ(2))^2 −ζ(4)⇒  Σ_(1≤i<j≤n) (1/((ij)^2 ))=((ζ(2)^2 −ζ(4))/2)
1i<jn=nj=21j2j1i=11i21j<in1(ij)2=1i<jn1(ij)2nj,i=11(ij)2=ni=11i2.nj=11j21j<in1(ij)2+1i<jn1(ij)2+ni=j=11(ij)2+ni=11i2nj=11j221i<jn1(ij)2=ni=11i2.nj.11j2n11j421i<jn1(ij)2=(ζ(2))2ζ(4)1i<jn1(ij)2=ζ(2)2ζ(4)2
Commented by gunawan last updated on 23/Oct/19
you are Amazing
youareAmazing
Commented by mind is power last updated on 23/Oct/19
thanx sir
thanxsir

Leave a Reply

Your email address will not be published. Required fields are marked *