Menu Close

Find-lim-n-n-p-x-n-where-p-Z-




Question Number 8633 by Yozzias last updated on 19/Oct/16
Find lim_(n→∞) (n^p /x^n )   where p∈Z^+ .
FindlimnnpxnwherepZ+.
Commented by prakash jain last updated on 19/Oct/16
Does x cover entire range of R?  For ∣x∣≤1 limit is ∞.  For ∣x∣>1 limit is 0.  p≥1
DoesxcoverentirerangeofR?Forx∣⩽1limitis.Forx∣>1limitis0.p1
Commented by Yozzias last updated on 19/Oct/16
Please consider the ∣x∣>1 case! Thanks.
Pleaseconsiderthex∣>1case!Thanks.
Answered by prakash jain last updated on 19/Oct/16
y=(n^p /x^n )  x>1  x^n =e^(nln x)   x^n =Σ_(i=0) ^∞ (((nln x)^i )/(i!))  (x^n /n^p )=Σ_(i=0) ^p (((ln x)^i )/(i!n^(p−i) ))+Σ_(i=p+1) ^∞ ((n^(i−p)  ln x)/(i!))  x>1⇒ln x>0  lim_(n→∞) (x^n /n^p )=0+∞=∞  or lim_(n→∞) (n^p /x^n )=0  for x<−1 case  or lim_(n→∞) (n^p /x^n )=lim_(n→∞) (1/((−1)^n ))(n^p /y^n )=0
y=npxnx>1xn=enlnxxn=i=0(nlnx)ii!xnnp=pi=0(lnx)ii!npi+i=p+1niplnxi!x>1lnx>0limnxnnp=0+=orlimnnpxn=0forx<1caseorlimnnpxn=limn1(1)nnpyn=0

Leave a Reply

Your email address will not be published. Required fields are marked *