Menu Close

find-lim-x-0-1-x-1-x-1-sinx-




Question Number 66318 by mathmax by abdo last updated on 12/Aug/19
find lim_(x→0) (((1+x)/(1−x)))^(1/(sinx))
findlimx0(1+x1x)1sinx
Commented by mathmax by abdo last updated on 24/Aug/19
let f(x)=(((1+x)/(1−x)))^(1/(sinx))  ⇒f(x)=e^((1/(sinx))ln(((1+x)/(1−x))))   but  ln(((1+x)/(1−x))) =ln(1+x)−ln(1−x) ∼x−(−x) =2x and sinx∼x ⇒  (1/(sinx))ln(((1+x)/(1−x))) ∼(1/x)(2x) =2 ⇒ lim_(x→0) f(x)=e^2
letf(x)=(1+x1x)1sinxf(x)=e1sinxln(1+x1x)butln(1+x1x)=ln(1+x)ln(1x)x(x)=2xandsinxx1sinxln(1+x1x)1x(2x)=2limx0f(x)=e2
Commented by kaivan.ahmadi last updated on 12/Aug/19
=e^(lim_(x→0) (((1+x)/(1−x))−1)×(1/x)) =e^(lim_(x→0) (((2x)/(1−x)))×(1/x)) =e^2
=elimx0(1+x1x1)×1x=elimx0(2x1x)×1x=e2
Commented by Mikael last updated on 12/Aug/19
lim_(x→0) [1+(((1+x)/(1−x))−1)]^(1/(sinx)) = lim_(x→0)  [(1+((2x)/(1−x)))^((1−x)/(2x)) ]^(((2x)/(1−x)).(1/(sinx)))   lim_(x→0)  [(1+((2x)/(1−x)))^((1−x)/(2x)) ]=e ,then lim_(x→0)  ((2x)/(1−x)).(1/(sinx)) =lim_(x→0)  (x/(sinx)).(2/(1−x))= 1×2=2  = e^2
limx0[1+(1+x1x1)]1sinx=limx0[(1+2x1x)1x2x]2x1x.1sinxlimx0[(1+2x1x)1x2x]=e,thenlimx02x1x.1sinx=limx0xsinx.21x=1×2=2=e2
Commented by mathmax by abdo last updated on 12/Aug/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *