Menu Close

find-lim-x-0-log-x-n-x-x-n-N-where-x-represents-greatest-integer-less-than-or-equal-to-x-




Question Number 141966 by gsk2684 last updated on 25/May/21
find lim_(x→0)  ((log x^n −[x])/([x])), n∈N where   [x] represents greatest integer less than or equal to x.
$${find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{log}\:{x}^{{n}} −\left[{x}\right]}{\left[{x}\right]},\:{n}\in{N}\:{where}\: \\ $$$$\left[{x}\right]\:{represents}\:{greatest}\:{integer}\:{less}\:{than}\:{or}\:{equal}\:{to}\:{x}. \\ $$
Commented by gsk2684 last updated on 25/May/21
solution please
$${solution}\:{please} \\ $$
Commented by mathmax by abdo last updated on 26/May/21
limit give ((−∞)/0)−1( indetermined form and 0 here is not 0^+  or 0^− )
$$\mathrm{limit}\:\mathrm{give}\:\frac{−\infty}{\mathrm{0}}−\mathrm{1}\left(\:\mathrm{indetermined}\:\mathrm{form}\:\mathrm{and}\:\mathrm{0}\:\mathrm{here}\:\mathrm{is}\:\mathrm{not}\:\mathrm{0}^{+} \:\mathrm{or}\:\mathrm{0}^{−} \right) \\ $$
Commented by gsk2684 last updated on 26/May/21
fraction is split in to two terms.  then i could not understand well.   explain me in detailed proof sir.
$${fraction}\:{is}\:{split}\:{in}\:{to}\:{two}\:{terms}. \\ $$$${then}\:{i}\:{could}\:{not}\:{understand}\:{well}.\: \\ $$$${explain}\:{me}\:{in}\:{detailed}\:{proof}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *