find-lim-x-0-tan-pi-2-x-x- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 66321 by mathmax by abdo last updated on 12/Aug/19 findlimx→0+(tan(π2+x))x Commented by mathmax by abdo last updated on 24/Aug/19 letA(x)=(tan(π2+x))x⇒A(x)=exln(π2+x)changementπ2+x=tgive2+xπ=1t⇒2+x=πt⇒x=πt−2⇒A(x)=B(t)=e(πt−2)ln(tant)⇒limx→0A(x)=limt→π2e(πt−2)ln(t)=limt→π2e(π−2t)ln(tant)2tchangementπ−2t=ugive2t=π−ulimt→π2B(t)=limu→0euln(tan(π2−u2))π−u=limu→0euπ−uln(1tan(u2))=limu→0e−uπ−uln(tan(u2))=1becausetan(u2)∼u2(V(0))andlimu→0+ulnu=0 Commented by mathmax by abdo last updated on 24/Aug/19 anotherwaywehaveπ2+x=π2(1+x2)∼π2(1−x2)=π2−πx4⇒tan(π2+x)=1tan(πx4)but(tan(π2+x))x=exln(tan(π2+x))⇒f(x)=e−xln(tan(πx4))∼e−xln(πx4)→1(x→0) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: analysis-II-evaluate-1-10-x-2-d-x-x-fractional-part-of-x-Next Next post: Question-131858 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.