Menu Close

find-lim-x-0-tan-pi-2-x-x-




Question Number 66321 by mathmax by abdo last updated on 12/Aug/19
find lim_(x→0^+ )    (tan((π/(2+x))))^x
findlimx0+(tan(π2+x))x
Commented by mathmax by abdo last updated on 24/Aug/19
let A(x) =(tan((π/(2+x))))^x  ⇒ A(x) =e^(xln((π/(2+x))))   changement (π/(2+x)) =t give ((2+x)/π) =(1/t) ⇒2+x =(π/t) ⇒x =(π/t)−2 ⇒  A(x) =B(t) =e^(((π/t)−2)ln(tant))  ⇒lim_(x→0)  A(x)=lim_(t→(π/2))  e^(((π/t)−2)ln(t))   =lim_(t→(π/2))   e^((π−2t)((ln(tant))/(2t)))   changement π−2t =u give 2t=π−u  lim_(t→(π/2))   B(t) =lim_(u→0)    e^(u((ln(tan((π/2)−(u/2))))/(π−u)))   =lim_(u→0)     e^((u/(π−u))ln((1/(tan((u/2))))))  =lim_(u→0)    e^(−(u/(π−u))ln(tan((u/2))))  =1   because tan((u/2))∼(u/2)(V(0)) and lim_(u→0^+ )  ulnu=0
letA(x)=(tan(π2+x))xA(x)=exln(π2+x)changementπ2+x=tgive2+xπ=1t2+x=πtx=πt2A(x)=B(t)=e(πt2)ln(tant)limx0A(x)=limtπ2e(πt2)ln(t)=limtπ2e(π2t)ln(tant)2tchangementπ2t=ugive2t=πulimtπ2B(t)=limu0euln(tan(π2u2))πu=limu0euπuln(1tan(u2))=limu0euπuln(tan(u2))=1becausetan(u2)u2(V(0))andlimu0+ulnu=0
Commented by mathmax by abdo last updated on 24/Aug/19
another way  we have (π/(2+x)) =(π/(2(1+(x/2)))) ∼(π/2)(1−(x/2))=(π/2)−((πx)/4)  ⇒tan((π/(2+x))) =(1/(tan(((πx)/4))))  but (tan((π/(2+x))))^x  =e^(xln(tan((π/(2+x)))))   ⇒f(x)  =e^(−xln(tan(((πx)/4))))  ∼ e^(−xln(((πx)/4)))  →1  (x→0)
anotherwaywehaveπ2+x=π2(1+x2)π2(1x2)=π2πx4tan(π2+x)=1tan(πx4)but(tan(π2+x))x=exln(tan(π2+x))f(x)=exln(tan(πx4))exln(πx4)1(x0)

Leave a Reply

Your email address will not be published. Required fields are marked *