Menu Close

Find-max-amp-min-value-of-f-x-x-x-2-5x-9-




Question Number 141294 by bemath last updated on 17/May/21
Find max & min value of   f(x)=(x/(x^2 −5x+9)).
Findmax&minvalueoff(x)=xx25x+9.
Answered by MJS_new last updated on 17/May/21
(df/dx)=((−x^2 +9)/((x^2 −5x+9)^2 ))=0 ⇒ x=±3  min at x=−3  max at x=3
dfdx=x2+9(x25x+9)2=0x=±3minatx=3maxatx=3
Answered by EDWIN88 last updated on 17/May/21
 Domain f(x): ∀xR  ((df(x))/dx) = ((x^2 −5x+9−x(2x−5))/((x^2 −5x+9)^2 )) = 0   ((df(x))/dx) = ((−x^2 +9)/((x^2 −5x+9)^2 ))  ⇒−x^2 +9 = 0 , x=± 3  by first−derivative tes we get   decreasing in x<−3 ∨ x>3  increasing in −3<x<3  thus  { ((min at x=−3)),((max at x=3)) :}⇒ { ((f_(min)  = −(3/(33))=−(1/(11)))),((f_(max)  = (3/3)=1)) :}
Domainf(x):xRdf(x)dx=x25x+9x(2x5)(x25x+9)2=0df(x)dx=x2+9(x25x+9)2x2+9=0,x=±3byfirstderivativeteswegetdecreasinginx<3x>3increasingin3<x<3thus{minatx=3maxatx=3{fmin=333=111fmax=33=1
Answered by bemath last updated on 17/May/21
 y = (x/(x^2 −5x+9))  ⇒yx^2 −5xy+9y−x =0  ⇒yx^2 −(5y+1)x+9y =0  Δ=(5y+1)^2 −4(y)(9y)≥0  ⇒25y^2 +10y+1−36y^2  ≥ 0  ⇒−11y^2 +10y+1 ≥ 0  ⇒11y^2 −10y−1≤0  ⇒(11y+1)(y−1)≤0  ⇒−(1/(11)) ≤ y ≤ 1   → { ((min =−(1/(11)))),((max = 1)) :}
y=xx25x+9yx25xy+9yx=0yx2(5y+1)x+9y=0Δ=(5y+1)24(y)(9y)025y2+10y+136y2011y2+10y+1011y210y10(11y+1)(y1)0111y1{min=111max=1
Answered by mr W last updated on 17/May/21
f(x)=(1/(x+(9/x)−5))  x+(9/x)≥2(√9)=6  ⇒f(x)_(max) =(1/(6−5))=1 when x=3  x+(9/x)≤−2(√9)=−6  ⇒f(x)_(min) =(1/(−6−5))=−(1/(11)) when x=−3
f(x)=1x+9x5x+9x29=6f(x)max=165=1whenx=3x+9x29=6f(x)min=165=111whenx=3
Answered by 1549442205PVT last updated on 06/Jun/21
put A=(x/(x^2 −5x+9))⇔Ax^2 −(5A+1)x+9A=0  This quadratc  equation always has  roots so Δ=(5A+1)^2 −36A^2 ≥0  −11A^2 +10A+1≥0⇔(1+11A)(1−A)≥0  ⇔((−1)/(11))≤A≤1.Hence,A_(min) =((−1)/(11)) when x=−3  A_(max) =2 when x=3
putA=xx25x+9Ax2(5A+1)x+9A=0ThisquadratcequationalwayshasrootssoΔ=(5A+1)236A2011A2+10A+10(1+11A)(1A)0111A1.Hence,Amin=111whenx=3Amax=2whenx=3

Leave a Reply

Your email address will not be published. Required fields are marked *