Menu Close

find-maximum-and-minimum-cos-x-3-sin-x-for-pi-6-x-pi-




Question Number 71563 by gunawan last updated on 17/Oct/19
find maximum and minimum  cos x+(√3) sin x  for  (π/6)≤x≤π
findmaximumandminimumcosx+3sinxforπ6xπ
Answered by MJS last updated on 17/Oct/19
cos x +(√3)sin x =2sin (x+(π/6))  ⇒ minimum at x=(5/6)π
cosx+3sinx=2sin(x+π6)minimumatx=56π
Answered by Kunal12588 last updated on 17/Oct/19
a sin θ + b cos θ  =(√(a^2 +b^2 ))((a/( (√(a^2 +b^2 )))) sin θ + (b/( (√(a^2 +b^2 )))) cos θ)  let (a/( (√(a^2 +b^2 ))))=sin φ or cos φ  ⇒ (b/( (√(a^2 +b^2 ))))=cos  φ or sin φ [this step is deduction from above step not asuumption]  [note: this assumption is only valid if −1≤(a/( (√(a^2 +b^2 ))))≤1]  if u choose blue ones  a sin θ + b cos θ=(√(a^2 +b^2 ))(sin φ sin θ + cos φ cos θ)  =(√(a^2 +b^2 ))sin (θ−φ)  if u chose red ones  a sin θ + b cos θ=(√(a^2 +b^2 ))(cos φ sin θ + sin φ cos θ)  =(√(a^2 +b^2 ))cos(θ+φ)  ∴ max = (√(a^2 +b^2 )) , also check at ends of domain  min=−(√(a^2 +b^2 )) , also check at ends of domain
asinθ+bcosθ=a2+b2(aa2+b2sinθ+ba2+b2cosθ)letaa2+b2=sinϕorcosϕba2+b2=cosϕorsinϕ[thisstepisdeductionfromabovestepnotasuumption][note:thisassumptionisonlyvalidif1aa2+b21]ifuchooseblueonesasinθ+bcosθ=a2+b2(sinϕsinθ+cosϕcosθ)=a2+b2sin(θϕ)ifuchoseredonesasinθ+bcosθ=a2+b2(cosϕsinθ+sinϕcosθ)=a2+b2cos(θ+ϕ)max=a2+b2,alsocheckatendsofdomainmin=a2+b2,alsocheckatendsofdomain

Leave a Reply

Your email address will not be published. Required fields are marked *