find-maximum-and-minimum-cos-x-3-sin-x-for-pi-6-x-pi- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 71563 by gunawan last updated on 17/Oct/19 findmaximumandminimumcosx+3sinxforπ6⩽x⩽π Answered by MJS last updated on 17/Oct/19 cosx+3sinx=2sin(x+π6)⇒minimumatx=56π Answered by Kunal12588 last updated on 17/Oct/19 asinθ+bcosθ=a2+b2(aa2+b2sinθ+ba2+b2cosθ)letaa2+b2=sinϕorcosϕ⇒ba2+b2=cosϕorsinϕ[thisstepisdeductionfromabovestepnotasuumption][note:thisassumptionisonlyvalidif−1⩽aa2+b2⩽1]ifuchooseblueonesasinθ+bcosθ=a2+b2(sinϕsinθ+cosϕcosθ)=a2+b2sin(θ−ϕ)ifuchoseredonesasinθ+bcosθ=a2+b2(cosϕsinθ+sinϕcosθ)=a2+b2cos(θ+ϕ)∴max=a2+b2,alsocheckatendsofdomainmin=−a2+b2,alsocheckatendsofdomain Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-71560Next Next post: Question-137097 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.