Menu Close

Find-maximum-value-of-f-x-16-x-2-x-2-9-




Question Number 134285 by bramlexs22 last updated on 02/Mar/21
Find maximum value of   f(x) = (√((16−x^2 )(x^2 −9)))
Findmaximumvalueoff(x)=(16x2)(x29)
Answered by EDWIN88 last updated on 02/Mar/21
let g(x)=(16−x^2 )(x^2 −9) ⇒((dg(x))/dx)=−2x(x^2 −9)+2x(16−x^2 )=0  −2x{x^2 −9−(16−x^2 )}=0  −2x(2x^2 −25)=0 → { ((x=0)),((x=± (5/( (√2))))) :}  ((d^2 g(x))/dx^2 ) = −12x^2 +60 < 0 for x = ± (5/( (√2)))  it follow that g(x) maximum at x= ± (5/( (√2)))  so f(x)_(max)  = (√((16−((25)/2))(((25)/2)−9)))   = (√((7/2)×(7/2))) = (7/2) .
letg(x)=(16x2)(x29)dg(x)dx=2x(x29)+2x(16x2)=02x{x29(16x2)}=02x(2x225)=0{x=0x=±52d2g(x)dx2=12x2+60<0forx=±52itfollowthatg(x)maximumatx=±52sof(x)max=(16252)(2529)=72×72=72.
Commented by bramlexs22 last updated on 02/Mar/21
Answered by mr W last updated on 02/Mar/21
((a+b)/2)≥(√(ab))  f(x) = (√((16−x^2 )(x^2 −9)))   ≤(1/2)(16−x^2 +x^2 −9)=(7/2)  i.e. maximum=(7/2)
a+b2abf(x)=(16x2)(x29)12(16x2+x29)=72i.e.maximum=72
Commented by bramlexs22 last updated on 02/Mar/21
AM−GM
AMGM

Leave a Reply

Your email address will not be published. Required fields are marked *