Menu Close

Find-maximum-value-of-the-product-xy-72-3x-4y-for-positive-value-of-x-amp-y-




Question Number 141164 by iloveisrael last updated on 16/May/21
    Find maximum value      of the product xy(72−3x−4y)      for positive value of x & y.
Findmaximumvalueoftheproductxy(723x4y)forpositivevalueofx&y.
Commented by mitica last updated on 16/May/21
max=1152 for x=8,y=6
max=1152forx=8,y=6
Answered by EDWIN88 last updated on 16/May/21
The terms of the product x,y & 72−3x−4y  do not have a constant sum. However if we  adjust the product and write it as           (1/(12))(3x)(4y)(72−3x−4y)    then ignoring the multiplier (1/(12)) for a moment  we see that the factors 3x,4y & 72−3x−4y   have a constant 72. Thus we seek value of   x & y satisfying          3x=4y=72−3x−4y   given the unique values  { ((x=8)),((y=6)) :}   Thus the max value of xy(72−3x−4y) is         8×6×24 = 1,152 ⋇
Thetermsoftheproductx,y&723x4ydonothaveaconstantsum.Howeverifweadjusttheproductandwriteitas112(3x)(4y)(723x4y)thenignoringthemultiplier112foramomentweseethatthefactors3x,4y&723x4yhaveaconstant72.Thusweseekvalueofx&ysatisfying3x=4y=723x4ygiventheuniquevalues{x=8y=6Thusthemaxvalueofxy(723x4y)is8×6×24=1,152
Commented by iloveisrael last updated on 16/May/21
Yes....
Yes.
Answered by mitica last updated on 16/May/21
if 72−3x−4y≤0⇒xy(72−3x−4y)≤0  if 72−3x−4y>0⇒(1/(12))∙3x∙4y∙(72−3x−4y)≤^(am−gm) (1/(12))(3x+4y−72−3x−4y)^3 ∙(1/(27))=1152  = for 3x=4y=72−3x−4y⇒x=8,y=6  ⇒max{xy(72−3x−4y)}=1152
if723x4y0xy(723x4y)0if723x4y>01123x4y(723x4y)amgm112(3x+4y723x4y)3127=1152=for3x=4y=723x4yx=8,y=6max{xy(723x4y)}=1152

Leave a Reply

Your email address will not be published. Required fields are marked *