Menu Close

Find-maximum-volume-of-a-cylinder-within-a-unit-cube-whose-axis-is-along-a-diagonal-of-the-cube-




Question Number 138388 by ajfour last updated on 13/Apr/21
Find maximum volume of a  cylinder within a unit cube   whose axis is along a diagonal  of the cube.
Findmaximumvolumeofacylinderwithinaunitcubewhoseaxisisalongadiagonalofthecube.
Answered by mr W last updated on 13/Apr/21
r=radius of cylinder  l=length of cylinder  a=edge length of cube=1  l=(√3)a−2(√2)r  V=πr^2 l=πr^2 ((√3)a−2(√2)r)  (dV/dr)=π(2(√3)ar−6(√2)r^2 )=0  ⇒r_m =(a/( (√6)))  V_(max) =π×(a^2 /6)((√3)a−((2(√2)a)/( (√6))))=(((√3)πa^3 )/(18))
r=radiusofcylinderl=lengthofcylindera=edgelengthofcube=1l=3a22rV=πr2l=πr2(3a22r)dVdr=π(23ar62r2)=0rm=a6Vmax=π×a26(3a22a6)=3πa318
Commented by mr W last updated on 13/Apr/21
fine! it′s more elegant using vectors.
fine!itsmoreelegantusingvectors.
Commented by ajfour last updated on 13/Apr/21
yes sir, thank you, understood.  cos φ=(((i+j+k))/( (√3)))∙(((i+j))/( (√2)))=((√2)/( (√3)))  tan φ=(r/b) =(1/( (√2)))  ⇒  b=r(√2)  2b+l=a(√3)  2r(√2)+l=a(√3)  l=a(√3)−2r(√2)  ....  ....  r_m =(a/( (√6)))   ,  V_(max) =(((√3)πa^3 )/(18))
yessir,thankyou,understood.cosϕ=(i+j+k)3(i+j)2=23tanϕ=rb=12b=r22b+l=a32r2+l=a3l=a32r2..rm=a6,Vmax=3πa318
Commented by mr W last updated on 14/Apr/21
can you prove Q138519 using vector  method?  i found that by accident, but  have no proof yet.
canyouproveQ138519usingvectormethod?ifoundthatbyaccident,buthavenoproofyet.
Answered by mr W last updated on 14/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *