Menu Close

Find-minimum-and-maximum-value-of-function-f-x-2sin-x-3-sin-x-1-




Question Number 132531 by bemath last updated on 15/Feb/21
Find minimum and maximum  value of function f(x)=(√(2sin x+3))−(√(sin x+1))
Findminimumandmaximumvalueoffunctionf(x)=2sinx+3sinx+1
Answered by liberty last updated on 15/Feb/21
((df(x))/dx)=((cos x)/( (√(2sin x+3))))−((cos x)/(2(√(sin x+1)))) =0   ((cos x)/( (√(2sin x+3)))) = ((cos x)/(2(√(sin x+1))))  cos^2 x(4sin x+4)=cos^2 x(2sin x+3)  cos^2 (x) [ 2sin x+1 ]=0   { ((cos^2 x=0 → { ((x=(π/2))),((x=((3π)/2))) :})),((sin x=−(1/2)→x=((7π)/6))) :}  (1)f((π/2))=(√(2sin (π/2)+3))−(√(sin (π/2)+1))            = (√5)−(√2) ≈ 0.8219  (2)f(((3π)/2))= (√(2sin ((3π)/2)+3))−(√(sin ((3π)/2)+1))  = (√1) −(√0) = 1 (maximum)  (3) f(((7π)/6))=(√(2sin ((7π)/6)+3))−(√(sin ((7π)/6)+1))   = (√2) −(1/( (√2))) = (1/( (√2))) ≈ 0.7071 (minimum)
df(x)dx=cosx2sinx+3cosx2sinx+1=0cosx2sinx+3=cosx2sinx+1cos2x(4sinx+4)=cos2x(2sinx+3)cos2(x)[2sinx+1]=0{cos2x=0{x=π2x=3π2sinx=12x=7π6(1)f(π2)=2sinπ2+3sinπ2+1=520.8219(2)f(3π2)=2sin3π2+3sin3π2+1=10=1(maximum)(3)f(7π6)=2sin7π6+3sin7π6+1=212=120.7071(minimum)
Commented by liberty last updated on 15/Feb/21
Answered by MJS_new last updated on 15/Feb/21
y=(√(3+2sin x))−(√(1+sin x))  let (√(1+sin x))=u∧0≤u≤(√2)  y=(√(2u^2 +1))−u  (dy/du)=((2u−(√(2u^2 +1)))/( (√(2u^2 +1))))=0 ⇒ u=((√2)/2)  ⇒  0≤u≤(√2) ⇒ ((√2)/2)≤y≤1
y=3+2sinx1+sinxlet1+sinx=u0u2y=2u2+1udydu=2u2u2+12u2+1=0u=220u222y1

Leave a Reply

Your email address will not be published. Required fields are marked *