Menu Close

Find-modulus-and-argumen-of-z-1-i-4-3-i-7-1-i-2-8-1-i-3-12-




Question Number 133346 by bramlexs22 last updated on 21/Feb/21
 Find modulus and argumen of    z = (((1−i)^4 ((√3)+i)^7 )/((1+i(√2))^8 (−1−i(√3))^(12) ))
Findmodulusandargumenofz=(1i)4(3+i)7(1+i2)8(1i3)12
Answered by mathmax by abdo last updated on 21/Feb/21
z_1 =(1−i)^4 ((√3)+i)^7  and z_2 =(1+i(√2))^8 (−1−i(√3))^(12)  ⇒  z =(z_1 /z_2 ) ⇒ ∣z∣=((∣z_1 ∣)/(∣z_2 ∣)) and arg(z)∼arg(z_1 )−arg(z_2 )[2π]  ∣1−i∣ =(√2) ⇒1−i =(√2)((1/( (√2)))−(i/( (√2))))=(√2)e^(−((iπ)/4))  ⇒(1−i)^4  =((√2))^4  e^(−iπ)   ∣(√3)+i∣=2 ⇒(√3)+i =2(((√3)/2)+(1/2)i) =2e^((iπ)/6)  ⇒((√3)+i)^7  =2^7  e^((i7π)/6)  ⇒  z_1 =2^9  e^(−iπ) .e^(i((7π)/6))  =2^9  e^(i(((7π)/6)−π))  =2^9  e^((iπ)/6)   ∣1+i(√2)∣=(√3) ⇒1+i(√2)=(√3)((1/( (√3)))+i((√2)/( (√3)))) =(√3)e^(iarctan((√2)))   ⇒(1+i(√2))^8  =((√3))^(8 ) .e^(8iarctan((√2)))   ∣−1−i(√3)∣ =2 ⇒−1−i(√3)=2(−(1/2)−i((√3)/2)) =2e^(−((i4π)/3))  ⇒  (−1−i(√3))^(12)  =2^(12) .e^(−i16π)  ⇒z_2 =((√3))^8  .e^(8iarctan((√2))) .2^(12)  .e^(−16iπ)  ⇒  z =((2^9  e^((iπ)/6) )/(2^(12) .((√3))^8  .e^(8iarctan((√2))) )) =(1/(8.((√3))^8 ))e^(i((π/6)−8arctan((√2))))  ⇒  ∣z∣=(1/(8.((√3))^8 )) and arg(z)∼ (π/6)−8arctan((√2)) [2π]
z1=(1i)4(3+i)7andz2=(1+i2)8(1i3)12z=z1z2z∣=z1z2andarg(z)arg(z1)arg(z2)[2π]1i=21i=2(12i2)=2eiπ4(1i)4=(2)4eiπ3+i∣=23+i=2(32+12i)=2eiπ6(3+i)7=27ei7π6z1=29eiπ.ei7π6=29ei(7π6π)=29eiπ61+i2∣=31+i2=3(13+i23)=3eiarctan(2)(1+i2)8=(3)8.e8iarctan(2)1i3=21i3=2(12i32)=2ei4π3(1i3)12=212.ei16πz2=(3)8.e8iarctan(2).212.e16iπz=29eiπ6212.(3)8.e8iarctan(2)=18.(3)8ei(π68arctan(2))z∣=18.(3)8andarg(z)π68arctan(2)[2π]

Leave a Reply

Your email address will not be published. Required fields are marked *