Menu Close

Find-n-1-1-2n-1-4-




Question Number 1539 by 314159 last updated on 17/Aug/15
Find Σ_(n=1) ^∞ (1/((2n−1)^4 )).
Findn=11(2n1)4.
Answered by 123456 last updated on 17/Aug/15
Σ_(n=1) ^(+∞) (1/n^4 )=Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))+Σ_(n=1) ^(+∞) (1/((2n)^4 ))  Σ_(n=1) ^(+∞) (1/n^4 )=Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))+(1/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=Σ_(n=1) ^(+∞) (1/n^4 )−(1/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=((15)/(16))Σ_(n=1) ^(+∞) (1/n^4 )  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=((15)/(16))×(π^4 /(90))=((15π^4 )/(16×90))=((5π^4 )/(16×30))=(π^4 /(16×6))=(π^4 /(96))  Σ_(n=1) ^(+∞) (1/((2n−1)^4 ))=(π^4 /(96))
+n=11n4=+n=11(2n1)4++n=11(2n)4+n=11n4=+n=11(2n1)4+116+n=11n4+n=11(2n1)4=+n=11n4116+n=11n4+n=11(2n1)4=1516+n=11n4+n=11(2n1)4=1516×π490=15π416×90=5π416×30=π416×6=π496+n=11(2n1)4=π496
Commented by 314159 last updated on 17/Aug/15
Thank a lot...
Thankalot
Commented by 112358 last updated on 17/Aug/15
Out of curiosity, how is                   Σ_(n=1) ^(+∞) (1/n^4 )=(π^4 /(90))  ?
Outofcuriosity,howis+n=11n4=π490?
Commented by 123456 last updated on 17/Aug/15
rieman zeta function, later i answer you
riemanzetafunction,lateriansweryou
Commented by 112358 last updated on 17/Aug/15
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *