Menu Close

find-n-1-1-n-2-n-1-3-




Question Number 68592 by Abdo msup. last updated on 14/Sep/19
find Σ_(n=1) ^∞   (1/(n^2 (n+1)^3 ))
findn=11n2(n+1)3
Commented by Abdo msup. last updated on 16/Sep/19
let S_n =Σ_(k=1) ^n  (1/(k^2 (k+1)^3 ))  we have S=lim_(n→+∞)  S_n   let decompose F(x)=(1/(x^2 (x+1)^3 ))  F(x)=(a/x)+(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(e/((x+1)^3 ))  b=lim_(x→0) x^2 F(x)=1  e=lim_(x→−1) (x+1)^3 F(x)=1 ⇒  F(x)=(a/x) +(1/x^2 ) +(c/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  lim_(x→+∞)  xF(x)=0=a +c ⇒c=−a ⇒  F(x)=(a/x) +(1/x^2 )−(a/(x+1)) +(d/((x+1)^2 )) +(1/((x+1)^3 ))  F(1)=(1/8) =a+1−(a/2) +(d/4) +(1/8) ⇒  (1/2)a +(d/4)=−1 ⇒2a+d =−4  F(−2) =−(1/4) =−(a/2)+(1/4) +a +d−1  =(1/2)a +d−(3/4) ⇒−1=2a +4d−3 ⇒  2a+4d=2 ⇒a+2d =1   but d=−2a−4 ⇒  a−4a−8 =1 ⇒−3a=9 ⇒a=−3  ⇒d=−2a−4 =6−4=2  F(x)=−(3/x) +(1/x^2 ) +(3/((x+1)))+(2/((x+1)^2 )) +(1/((x+1)^3 )) ⇒  S_n =Σ_(k=1) ^n  F(k)=−3Σ_(k=1) ^n  (1/k) +Σ_(k=1) ^n  (1/k^2 )  +3 Σ_(k=1) ^n  (1/(k+1)) +2Σ_(k=1) ^n  (1/((k+1)^2 )) +Σ_(k=1) ^n (1/((k+1)^3 ))   Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1  Σ_(k=1) ^n  (1/k^2 ) =ξ_n (2)  Σ_(k=1) ^n  (1/((k+1)^2 )) =Σ_(k=2) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−1  Σ_(k=1) ^n  (1/((k+1)^3 )) =Σ_(k=2) ^(n+1)  (1/k^3 ) =ξ_(n+1) (3)−1 ⇒  S_n =−(3/5)H_n  +ξ_n (2)−(3/5)(H_(n+1) −1)  −(2/5)(ξ_(n+1) (2)−1) +ξ_(n+1) (3)−1 ⇒  S_n =−3H_n  +ξ_n (2) +3(H_(n+1) −1)  +2(ξ_(n+1) (2)−1) +ξ_(n+1) (3)−1  =3(H_(n+1) −H_n ) +ξ_n (2)+2ξ_(n+1) (2)+ξ_(n+1) (3)−6  but lim_(n→+∞)  (H_(n+1) −H_n )=0 ⇒  lim_(n→+∞)  S_n = 3ξ(2)+ξ(3)−6  =3.(π^2 /6) +ξ(3)−6 =(π^2 /2) +ξ(3)−6  with  ξ(3)∼1,2
letSn=k=1n1k2(k+1)3wehaveS=limn+SnletdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx0x2F(x)=1e=limx1(x+1)3F(x)=1F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx+xF(x)=0=a+cc=aF(x)=ax+1x2ax+1+d(x+1)2+1(x+1)3F(1)=18=a+1a2+d4+1812a+d4=12a+d=4F(2)=14=a2+14+a+d1=12a+d341=2a+4d32a+4d=2a+2d=1butd=2a4a4a8=13a=9a=3d=2a4=64=2F(x)=3x+1x2+3(x+1)+2(x+1)2+1(x+1)3Sn=k=1nF(k)=3k=1n1k+k=1n1k2+3k=1n1k+1+2k=1n1(k+1)2+k=1n1(k+1)3k=1n1k+1=k=2n+11k=Hn+11k=1n1k2=ξn(2)k=1n1(k+1)2=k=2n+11k2=ξn+1(2)1k=1n1(k+1)3=k=2n+11k3=ξn+1(3)1Sn=35Hn+ξn(2)35(Hn+11)25(ξn+1(2)1)+ξn+1(3)1Sn=3Hn+ξn(2)+3(Hn+11)+2(ξn+1(2)1)+ξn+1(3)1=3(Hn+1Hn)+ξn(2)+2ξn+1(2)+ξn+1(3)6butlimn+(Hn+1Hn)=0limn+Sn=3ξ(2)+ξ(3)6=3.π26+ξ(3)6=π22+ξ(3)6withξ(3)1,2
Commented by Abdo msup. last updated on 16/Sep/19
ξ_n (x)=Σ_(k=1) ^n  (1/k^x )
ξn(x)=k=1n1kx

Leave a Reply

Your email address will not be published. Required fields are marked *