find-n-1-1-n-2-n-1-3- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 68592 by Abdo msup. last updated on 14/Sep/19 find∑n=1∞1n2(n+1)3 Commented by Abdo msup. last updated on 16/Sep/19 letSn=∑k=1n1k2(k+1)3wehaveS=limn→+∞SnletdecomposeF(x)=1x2(x+1)3F(x)=ax+bx2+cx+1+d(x+1)2+e(x+1)3b=limx→0x2F(x)=1e=limx→−1(x+1)3F(x)=1⇒F(x)=ax+1x2+cx+1+d(x+1)2+1(x+1)3limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax+1x2−ax+1+d(x+1)2+1(x+1)3F(1)=18=a+1−a2+d4+18⇒12a+d4=−1⇒2a+d=−4F(−2)=−14=−a2+14+a+d−1=12a+d−34⇒−1=2a+4d−3⇒2a+4d=2⇒a+2d=1butd=−2a−4⇒a−4a−8=1⇒−3a=9⇒a=−3⇒d=−2a−4=6−4=2F(x)=−3x+1x2+3(x+1)+2(x+1)2+1(x+1)3⇒Sn=∑k=1nF(k)=−3∑k=1n1k+∑k=1n1k2+3∑k=1n1k+1+2∑k=1n1(k+1)2+∑k=1n1(k+1)3∑k=1n1k+1=∑k=2n+11k=Hn+1−1∑k=1n1k2=ξn(2)∑k=1n1(k+1)2=∑k=2n+11k2=ξn+1(2)−1∑k=1n1(k+1)3=∑k=2n+11k3=ξn+1(3)−1⇒Sn=−35Hn+ξn(2)−35(Hn+1−1)−25(ξn+1(2)−1)+ξn+1(3)−1⇒Sn=−3Hn+ξn(2)+3(Hn+1−1)+2(ξn+1(2)−1)+ξn+1(3)−1=3(Hn+1−Hn)+ξn(2)+2ξn+1(2)+ξn+1(3)−6butlimn→+∞(Hn+1−Hn)=0⇒limn→+∞Sn=3ξ(2)+ξ(3)−6=3.π26+ξ(3)−6=π22+ξ(3)−6withξ(3)∼1,2 Commented by Abdo msup. last updated on 16/Sep/19 ξn(x)=∑k=1n1kx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-n-2n-1-2-Next Next post: calculate-0-2pi-dx-cosx-sin-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.