Menu Close

find-n-2-1-n-n-2-1-2-




Question Number 65673 by mathmax by abdo last updated on 01/Aug/19
find Σ_(n=2) ^∞  (((−1)^n )/((n^2 −1)^2 ))
findn=2(1)n(n21)2
Commented by mathmax by abdo last updated on 02/Aug/19
let S =Σ_(n=2) ^∞  (((−1)^n )/((n^2 −1)^2 ))  let decompose F(x) =(1/((x^2 −1)^2 ))  F(x) =(1/((x−1)^2 (x+1)^2 )) =(a/(x−1))+(b/((x−1)^2 )) +(c/((x+1))) +(d/((x+1)^2 ))  b =lim_(x→1) (x−1)^2 F(x) =(1/4)  d =lim_(x→−1) (x+1)^2 F(x) =(1/4) ⇒  F(x) =(a/(x−1)) +(1/(4(x−1)^2 )) +(c/(x+1)) +(1/(4(x+1)^2 ))  lim_(x→+∞) xF(x) =0 =a+c ⇒c=−a ⇒  F(x) =(a/(x−1)) +(1/(4(x−1)^2 ))−(a/(x+1)) +(1/(4(x+1)^2 ))  F(0) =1 =−a +(1/4) −a +(1/4) =−2a+(1/2) ⇒2a =(1/2)−1 =−(1/2) ⇒  a =−(1/4) ⇒F(x) =((−1)/(4(x−1))) +(1/(4(x−1)^2 )) +(1/(4(x+1))) +(1/(4(x+1)^2 ))  S =Σ_(n=2) ^∞  (−1)^n F(n) =−(1/4)Σ_(n=2) ^∞  (((−1)^n )/(n−1)) +(1/4)Σ_(n=2) ^∞  (((−1)^n )/((n−1)^2 ))  +(1/4)Σ_(n=2) ^∞  (((−1)^n )/((n+1))) +(1/4)Σ_(n=2) ^∞  (((−1)^n )/((n+1)^2 ))  Σ_(n=2) ^∞  (((−1)^n )/(n−1)) =Σ_(n=1) ^∞  (((−1)^(n+1) )/n) =−Σ_(n=1) ^∞  (((−1)^n )/n) =ln(2)  Σ_(n=2) ^∞   (((−1)^n )/(n+1)) =Σ_(n=3) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) −1+(1/2)  =ln(2)−(1/2)  Σ_(n=2) ^∞  (((−1)^n )/((n−1)^2 ))  =Σ_(n=1) ^∞  (((−1)^(n+1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  but we have Σ_(n=1) ^∞  (((−1)^n )/n^x ) =(2^(1−x) −1)ξ(x) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2) =−(1/2)(π^2 /6) =−(π^2 /(12))  Σ_(n=2) ^∞  (((−1)^n )/((n+1)^2 )) =Σ_(n=3) ^∞   (((−1)^(n−1) )/n^2 ) =−Σ_(n=3) ^∞  (((−1)^n )/n^2 )  =−{Σ_(n=1) ^∞  (((−1)^n )/n^2 )+1−(1/4)} =(3/4)−(−(π^2 /(12)))=(3/4) +(π^2 /(12)) ⇒  S =−(1/4)ln(2) +(1/4)((π^2 /(12))) +(1/4)(ln2−(1/2)) +(1/4)((3/4)+(π^2 /(12)))  =(π^2 /(48))−(1/8) +(3/(16)) +(π^2 /(48)) =(π^2 /(24)) +(1/(16))
letS=n=2(1)n(n21)2letdecomposeF(x)=1(x21)2F(x)=1(x1)2(x+1)2=ax1+b(x1)2+c(x+1)+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14F(x)=ax1+14(x1)2+cx+1+14(x+1)2limx+xF(x)=0=a+cc=aF(x)=ax1+14(x1)2ax+1+14(x+1)2F(0)=1=a+14a+14=2a+122a=121=12a=14F(x)=14(x1)+14(x1)2+14(x+1)+14(x+1)2S=n=2(1)nF(n)=14n=2(1)nn1+14n=2(1)n(n1)2+14n=2(1)n(n+1)+14n=2(1)n(n+1)2n=2(1)nn1=n=1(1)n+1n=n=1(1)nn=ln(2)n=2(1)nn+1=n=3(1)n1n=n=1(1)n1n1+12=ln(2)12n=2(1)n(n1)2=n=1(1)n+1n2=n=1(1)nn2butwehaven=1(1)nnx=(21x1)ξ(x)n=1(1)nn2=(2121)ξ(2)=12π26=π212n=2(1)n(n+1)2=n=3(1)n1n2=n=3(1)nn2={n=1(1)nn2+114}=34(π212)=34+π212S=14ln(2)+14(π212)+14(ln212)+14(34+π212)=π24818+316+π248=π224+116