find-n-2-1-n-n-2-1-2- Tinku Tara June 3, 2023 Relation and Functions FacebookTweetPin Question Number 65673 by mathmax by abdo last updated on 01/Aug/19 find∑n=2∞(−1)n(n2−1)2 Commented by mathmax by abdo last updated on 02/Aug/19 letS=∑n=2∞(−1)n(n2−1)2letdecomposeF(x)=1(x2−1)2F(x)=1(x−1)2(x+1)2=ax−1+b(x−1)2+c(x+1)+d(x+1)2b=limx→1(x−1)2F(x)=14d=limx→−1(x+1)2F(x)=14⇒F(x)=ax−1+14(x−1)2+cx+1+14(x+1)2limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax−1+14(x−1)2−ax+1+14(x+1)2F(0)=1=−a+14−a+14=−2a+12⇒2a=12−1=−12⇒a=−14⇒F(x)=−14(x−1)+14(x−1)2+14(x+1)+14(x+1)2S=∑n=2∞(−1)nF(n)=−14∑n=2∞(−1)nn−1+14∑n=2∞(−1)n(n−1)2+14∑n=2∞(−1)n(n+1)+14∑n=2∞(−1)n(n+1)2∑n=2∞(−1)nn−1=∑n=1∞(−1)n+1n=−∑n=1∞(−1)nn=ln(2)∑n=2∞(−1)nn+1=∑n=3∞(−1)n−1n=∑n=1∞(−1)n−1n−1+12=ln(2)−12∑n=2∞(−1)n(n−1)2=∑n=1∞(−1)n+1n2=−∑n=1∞(−1)nn2butwehave∑n=1∞(−1)nnx=(21−x−1)ξ(x)⇒∑n=1∞(−1)nn2=(21−2−1)ξ(2)=−12π26=−π212∑n=2∞(−1)n(n+1)2=∑n=3∞(−1)n−1n2=−∑n=3∞(−1)nn2=−{∑n=1∞(−1)nn2+1−14}=34−(−π212)=34+π212⇒S=−14ln(2)+14(π212)+14(ln2−12)+14(34+π212)=π248−18+316+π248=π224+116 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-sin-x-dx-Next Next post: calculus-prove-that-0-4-tan-x-tan-2-x-tan-x-tan-2-x-sin-x-dx-1-2-8-1-4-3-4-3-4-5-4-