Question Number 75795 by ~blr237~ last updated on 17/Dec/19
$$\mathrm{Find}\:\mathrm{out}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{argsh}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$
Commented by mathmax by abdo last updated on 18/Dec/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{argsh}\left({x}\right)}{{x}}{dx}\:\Rightarrow\:{A}\:=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{{x}}{dx} \\ $$$${changement}\:{argsh}\left({x}\right)={t}\:{give}\:{x}\:={sh}\left({t}\right)=\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}\:\Rightarrow \\ $$$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}}{{sh}\left({t}\right)}{ch}\left({t}\right){dt}\:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tch}\left({t}\right)}{{sh}\left({t}\right)}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:{t}\:\frac{{e}^{{t}} +{e}^{−{t}} }{{e}^{{t}} −{e}^{−{t}} }\:{dt}\:=\int_{\mathrm{0}} ^{\infty} \:{t}\:\frac{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{\mathrm{1}−{e}^{−\mathrm{2}{t}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\left({t}+{te}^{−\mathrm{2}{t}} \right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{nt}} \right){dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−\mathrm{2}{nt}} \:{dt}\:+\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−\left(\mathrm{2}+\mathrm{2}{n}\right){t}} \:{dt}\: \\ $$$${by}\:{parts}\:\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−\mathrm{2}{nt}} {dt}=\left[−\frac{{t}}{\mathrm{2}{n}}\:{e}^{−\mathrm{2}{nt}} \right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \:\left(−\frac{\mathrm{1}}{\mathrm{2}{n}}\right){e}^{−\mathrm{2}{nt}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{nt}} \:{dt}\:=−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\:\left[{e}^{−\mathrm{2}{n}} \right]_{\mathrm{0}} ^{+\infty} =\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−\left(\mathrm{2}+\mathrm{2}{n}\right){t}} \:{dt}\:=_{{t}=\frac{{u}}{\mathrm{2}}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}}{\mathrm{2}}\:{e}^{−\left({n}+\mathrm{1}\right){t}} \:\frac{{du}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \:\:{u}\:{e}^{−\left({n}+\mathrm{1}\right){u}} \:{du}\:\:=_{\left({n}+\mathrm{1}\right){u}={z}} \:\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \:\frac{{z}}{{n}+\mathrm{1}}{e}^{−{z}} \:\frac{{dz}}{{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:{z}\:{e}^{−{z}} \:{dz}\:=\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\left\{\:\left[−{z}\:{e}^{−{z}} \right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \:\left(−{e}^{−{z}} \right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\left\{\:\left[−{e}^{−{z}} \right]_{\mathrm{0}} ^{+\infty} \right\}\:=\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:{so}\:{A}\:{is}\:{divergent}\:…! \\ $$$${or}\:{something}\:{went}\:{wrong}.. \\ $$