Menu Close

Find-out-A-n-0-0-pi-2-1-sinx-n-cosxdx-




Question Number 75080 by ~blr237~ last updated on 07/Dec/19
Find out   A=Σ_(n=0) ^∞ ∫_0 ^(π/2) (1−(√(sinx)))^n cosxdx
FindoutA=n=00π2(1sinx)ncosxdx
Commented by mathmax by abdo last updated on 07/Dec/19
we have ∣1−(√(sinx))∣<1 ⇒A =∫_0 ^(π/2) (Σ_(n=0) ^∞ (1−(√(sinx)))^n ) cosx dx  =∫_0 ^(π/2)  (1/(1−(1−(√(sinx))))) cos(x)dx =∫_0 ^(π/2)  ((cosx)/( (√(sinx)))) dx  chagement (√(sinx))=t give sinx =t^2  ⇒x =arcsin(t^2 ) ⇒  dx =((2t)/( (√(1−t^4 )))) ⇒ A = ∫_0 ^1  ((√(1−t^4 ))/t)×((2t)/( (√(1−t^4 )))) dt =2 ∫_0 ^1 dt =2
wehave1sinx∣<1A=0π2(n=0(1sinx)n)cosxdx=0π211(1sinx)cos(x)dx=0π2cosxsinxdxchagementsinx=tgivesinx=t2x=arcsin(t2)dx=2t1t4A=011t4t×2t1t4dt=201dt=2

Leave a Reply

Your email address will not be published. Required fields are marked *