Find-out-A-n-0-0-pi-2-1-sinx-n-cosxdx- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 75080 by ~blr237~ last updated on 07/Dec/19 FindoutA=∑∞n=0∫0π2(1−sinx)ncosxdx Commented by mathmax by abdo last updated on 07/Dec/19 wehave∣1−sinx∣<1⇒A=∫0π2(∑n=0∞(1−sinx)n)cosxdx=∫0π211−(1−sinx)cos(x)dx=∫0π2cosxsinxdxchagementsinx=tgivesinx=t2⇒x=arcsin(t2)⇒dx=2t1−t4⇒A=∫011−t4t×2t1−t4dt=2∫01dt=2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-9544Next Next post: A-function-f-is-given-by-f-x-x-2-3-0-x-lt-2-4x-7-2-x-lt-4-is-such-that-f-x-f-x-4-find-f-27-and-f-106- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.