Find-out-A-n-2-n-n-3-n-where-p-n-1-1-n-p- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 78490 by ~blr237~ last updated on 18/Jan/20 FindoutA=∑∞n=2ζ(n)n(−3)nwhereζ(p)=∑∞n=11np Answered by mind is power last updated on 19/Jan/20 letf(x)=∑n⩾2ζ(n)xnn=∑n⩾2xnn∑m⩾11mn=∑n⩾2.∑m⩾1(xm)n.1n∀n,m,n⩾2andm⩾1wehave∑n⩾2∑m⩾1(xm)n.1n,⩽∑n⩾2xnn.ζ(2)<∞,∀x∈]−1,1[⇒∑n⩾2.∑m⩾1(xm)n.1n=∑m⩾1∑n⩾2(xm)nn=f(x)∑k⩾1akk=−ln(1−a)⇒∑k⩾2akk=−ln(1−a)−af(x)=∑m⩾1{−ln(1−xm)−xm}=f(x)wehaveoursum=f(−13)Γ(x)=1x∏k⩾1(1+1k)x1+xk⇒1x∏k⩾1.exln(1+1k)1+xk=1x.∏k⩾1exln(1+1k)−xk+xk1+xk=1x.∏k⩾1ex(ln(1+1k)−1k)+xk1+xk=1x.e∑k⩾1x(ln(1+1k)−1k).∏k⩾1exkeln(1+xk)∑k⩾1{ln(1+1k)−1k}=−γEulermacheronieConstentΓ(x)=e−γxx.e∑k⩾1{xk−ln(1+xk)}⇒lnΓ(x)=−γx−ln(x)+∑k⩾1{xk−ln(1+xk)}⇒∑k⩾1{xk−ln(1+xk)}=ln(Γ(x))+γx+ln(x)⇒∑k⩾1{−xk−ln(1−xk)}=f(x)=ln(Γ(−x))−γx+ln(−x)S=f(−13)=ln(Γ(13))+γ3+ln(13)=∑n⩾2ζ(n)n(−3)n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-144026Next Next post: Question-144031 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.