Question Number 73751 by ~blr237~ last updated on 15/Nov/19

Commented by mathmax by abdo last updated on 15/Nov/19
![J =∫_0 ^∞ A(y)dy with A(y)=∫_0 ^1 (2 e^(−2xy) −e^(−xy) )dx ⇒ A(y)=[−(1/y)e^(−2xy) ]_(x=0) ^(x=1) −[−(1/y)e^(−xy) ]_(x=0) ^(x=1) =(1/y)(1−e^(−2y) )+(1/y)(e^(−y) −1) =(1/y)(1−e^(−2y) +e^(−y) −1)=((e^(−x) −e^(−2y) )/y) ⇒ J =∫_0 ^∞ ((e^(−y) −e^(−2y) )/y)dy let f(u)=∫_0 ^∞ ((e^(−y) −e^(−2y) )/y) e^(−yu) dy with u≥0 we have f^′ (u) =−∫_0 ^∞ (e^(−y) −e^(−2y) )e^(−yu) dy =∫_0 ^∞ (e^(−(u+2)y) −e^(−(u+1)y) )dy =[((−1)/(u+2))e^(−(u+2)y) +(1/(u+1))e^(−(u+1)y) ]_0 ^∞ =(1/(u+2))−(1/(u+1)) ⇒f(u) =ln∣((u+2)/(u+1))∣ +c due to the continuity ∃m>0 /∣f(u)∣≤m ∫_0 ^∞ e^(−yu) dy =(m/u) →0(u→+∞) ⇒c=0 ⇒f(u)=ln∣((u+2)/(u+1))∣ J=f(0) =ln∣(2/1)∣ =ln(2)](https://www.tinkutara.com/question/Q73799.png)
Answered by mind is power last updated on 15/Nov/19
![j=∫_0 ^(+∞) [(e^(−2xy) /(−y))+(e^(−xy) /y)]_0 ^1 dy =∫_0 ^(+∞) {(e^(−2y) /(−y))+(e^(−y) /y)+(1/y)−(1/y)}dy =∫_0 ^(+∞) ((e^(−y) −e^(−2y) )/y)dy ∫_0 ^(+∞) ((f(ax)−f(bx))/x)dx=−f(0)ln((a/b)) if f continus withe limx→∞ f(x)=0 ∫_0 ^(+∞) ∫_b ^a f′(tx)dt.dx=∫_0 ^(+∞) [((f(tx))/x)]_b ^a dx=∫_0 ^(+∞) ((f(ax)−f(bx))/x).dx we use fubini ∫∫f(x,y)dxdy=∫∫f(x,y)dydx⇒ ∫((f(ax)−f(bx))/x)dx=∫_b ^a ∫_0 ^(+∞) f′(tx)dxdt=∫_b ^a [((f(tx))/t)]_0 ^(+∞) dt=∫_b ^a ((−f(0))/t)dt=−f(0)ln(∣(a/b)∣) in our exemple a=−1,b=−2 f(y)=e^(−y) ,f(0)=1,lim_(y→∞) f(y)=0 ⇒∫_0 ^(+∞) ((e^(−y) −e^(−2y) )/y)dy=−1ln(∣((−1)/(−2))∣)=ln(2)](https://www.tinkutara.com/question/Q73752.png)
Commented by ~blr237~ last updated on 15/Nov/19

Commented by mind is power last updated on 15/Nov/19
