Menu Close

Find-out-the-value-of-J-0-0-1-2e-2xy-e-xy-dxdy-




Question Number 73751 by ~blr237~ last updated on 15/Nov/19
Find  out the value of       J=∫_0 ^∞ ∫_0 ^1 (2e^(−2xy) −e^(−xy) )dxdy
FindoutthevalueofJ=001(2e2xyexy)dxdy
Commented by mathmax by abdo last updated on 15/Nov/19
J =∫_0 ^∞ A(y)dy  with A(y)=∫_0 ^1 (2 e^(−2xy) −e^(−xy) )dx ⇒  A(y)=[−(1/y)e^(−2xy) ]_(x=0) ^(x=1)  −[−(1/y)e^(−xy) ]_(x=0) ^(x=1)   =(1/y)(1−e^(−2y) )+(1/y)(e^(−y) −1) =(1/y)(1−e^(−2y)  +e^(−y) −1)=((e^(−x) −e^(−2y) )/y) ⇒  J =∫_0 ^∞   ((e^(−y)  −e^(−2y) )/y)dy  let f(u)=∫_0 ^∞   ((e^(−y) −e^(−2y) )/y) e^(−yu)  dy with u≥0  we have f^′ (u) =−∫_0 ^∞   (e^(−y) −e^(−2y) )e^(−yu)  dy  =∫_0 ^∞ (e^(−(u+2)y) −e^(−(u+1)y) )dy =[((−1)/(u+2))e^(−(u+2)y) +(1/(u+1))e^(−(u+1)y) ]_0 ^∞   =(1/(u+2))−(1/(u+1)) ⇒f(u) =ln∣((u+2)/(u+1))∣ +c  due to the continuity  ∃m>0 /∣f(u)∣≤m ∫_0 ^∞  e^(−yu) dy =(m/u) →0(u→+∞)  ⇒c=0 ⇒f(u)=ln∣((u+2)/(u+1))∣  J=f(0) =ln∣(2/1)∣ =ln(2)
J=0A(y)dywithA(y)=01(2e2xyexy)dxA(y)=[1ye2xy]x=0x=1[1yexy]x=0x=1=1y(1e2y)+1y(ey1)=1y(1e2y+ey1)=exe2yyJ=0eye2yydyletf(u)=0eye2yyeyudywithu0wehavef(u)=0(eye2y)eyudy=0(e(u+2)ye(u+1)y)dy=[1u+2e(u+2)y+1u+1e(u+1)y]0=1u+21u+1f(u)=lnu+2u+1+cduetothecontinuitym>0/f(u)∣⩽m0eyudy=mu0(u+)c=0f(u)=lnu+2u+1J=f(0)=ln21=ln(2)
Answered by mind is power last updated on 15/Nov/19
j=∫_0 ^(+∞) [(e^(−2xy) /(−y))+(e^(−xy) /y)]_0 ^1 dy  =∫_0 ^(+∞) {(e^(−2y) /(−y))+(e^(−y) /y)+(1/y)−(1/y)}dy  =∫_0 ^(+∞) ((e^(−y) −e^(−2y) )/y)dy  ∫_0 ^(+∞) ((f(ax)−f(bx))/x)dx=−f(0)ln((a/b))  if f continus  withe limx→∞ f(x)=0  ∫_0 ^(+∞) ∫_b ^a f′(tx)dt.dx=∫_0 ^(+∞) [((f(tx))/x)]_b ^a dx=∫_0 ^(+∞) ((f(ax)−f(bx))/x).dx  we use fubini ∫∫f(x,y)dxdy=∫∫f(x,y)dydx⇒  ∫((f(ax)−f(bx))/x)dx=∫_b ^a ∫_0 ^(+∞) f′(tx)dxdt=∫_b ^a [((f(tx))/t)]_0 ^(+∞) dt=∫_b ^a ((−f(0))/t)dt=−f(0)ln(∣(a/b)∣)  in our exemple a=−1,b=−2  f(y)=e^(−y) ,f(0)=1,lim_(y→∞)  f(y)=0     ⇒∫_0 ^(+∞) ((e^(−y) −e^(−2y) )/y)dy=−1ln(∣((−1)/(−2))∣)=ln(2)
j=0+[e2xyy+exyy]01dy=0+{e2yy+eyy+1y1y}dy=0+eye2yydy0+f(ax)f(bx)xdx=f(0)ln(ab)iffcontinuswithelimxf(x)=00+baf(tx)dt.dx=0+[f(tx)x]badx=0+f(ax)f(bx)x.dxweusefubinif(x,y)dxdy=f(x,y)dydxf(ax)f(bx)xdx=ba0+f(tx)dxdt=ba[f(tx)t]0+dt=baf(0)tdt=f(0)ln(ab)inourexemplea=1,b=2f(y)=ey,f(0)=1,limyf(y)=00+eye2yydy=1ln(12)=ln(2)
Commented by ~blr237~ last updated on 15/Nov/19
Thanks sir
Thankssir
Commented by mind is power last updated on 15/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *