find-pi-3-pi-3-x-2-cosx-sinx-3-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67235 by prof Abdo imad last updated on 24/Aug/19 find∫−π3π3x2{cosx−sinx}3dx Commented by mathmax by abdo last updated on 01/Sep/19 letI=∫−π3π3x2{cosx−sinx}3andJ=∫−π6π6x2{cosx+sinx}3dxwehaveI+J=∫−π3π3x2(cosx−sinx+cosx+sinx)((cosx−sinx)2−(cosx−sinx)(cosx+sinx)+(cosx+sinx)2}dx=∫−π3π32x2cosx{1−2cosxsinx−(cos2x−sin2x)+1+2cosxsinx}dx=∫−π3π32x2cosx{2−cos(2x)}dx=4∫0π3x2cosx(2−cos(2x))dx=8∫0π3x2cosxdx−4∫0π3cosx.cos(2x)dxbyparts∫0π3x2cosxdx=[x2sinx]0π3−∫0π32xsinxdx=−2{[−xcosx]0π3−∫0π3(−cosx)dx}=−2{−π6+[sinx]0π3}=−2{−π6+32}=π3−3∫0π3cosxcos(2x)dx=12∫0π3(cos(3x)+cosx)dx=16[sin(3x)]0π3+12[sinx]0π3=1232=34⇒I+J=8(π3−3)−3=8π3−93I−J=∫−π3π3x2{(cosx−sinx)3−(cosx+sinx)3}dx=∫−π3π3x2(−2sinx)(1−2cosxsinx+cos(2x)+1+2cosxsinx}dx=−2∫−π3π3x2sinx{2+cos(2x)}dx=0becausethefunctionisodd⇒I−J=0⇒I=J⇒⇒2I=8π3−93⇒I=4π3−923 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-cos-n-pi-3-n-Next Next post: Show-that-7-1-7-lt-8-1-8-Also-show-that-100001-100000-lt-1-2-100000- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.