Menu Close

find-pi-3-pi-3-x-2-cosx-sinx-3-dx-




Question Number 67235 by prof Abdo imad last updated on 24/Aug/19
find  ∫_(−(π/3)) ^(π/3)  x^2 {cosx−sinx}^3 dx
findπ3π3x2{cosxsinx}3dx
Commented by mathmax by abdo last updated on 01/Sep/19
let I =∫_(−(π/3)) ^(π/3) x^2 {cosx −sinx}^3  and J=∫_(−(π/6)) ^(π/6) x^2 {cosx +sinx}^3 dx  we have I +J =∫_(−(π/3)) ^(π/3) x^2 (cosx −sinx +cosx +sinx)((cosx−sinx)^2   −(cosx−sinx)(cosx +sinx)+(cosx +sinx)^2 }dx  =∫_(−(π/3)) ^(π/3) 2x^2 cosx{1−2cosxsinx −(cos^2 x−sin^2 x) +1+2cosx sinx}dx  =∫_(−(π/3)) ^(π/3)  2x^2 cosx{2 −cos(2x)}dx  =4 ∫_0 ^(π/3) x^2 cosx(2−cos(2x))dx =8 ∫_0 ^(π/3) x^2 cosxdx −4∫_0 ^(π/3)  cosx.cos(2x)dx  by parts ∫_0 ^(π/3)  x^2 cosxdx=[x^2 sinx]_0 ^(π/3) −∫_0 ^(π/3)  2xsinx dx  =−2{[−xcosx]_0 ^(π/3)  −∫_0 ^(π/3)  (−cosx)dx}  =−2{−(π/6) +[sinx]_0 ^(π/3) }=−2{−(π/6)+((√3)/2)} =(π/3)−(√3)  ∫_0 ^(π/3) cosx cos(2x)dx =(1/2)∫_0 ^(π/3) (cos(3x)+cosx)dx=(1/6)[sin(3x)]_0 ^(π/3)   +(1/2)[sinx]_0 ^(π/3)  =(1/2)((√3)/2) =((√3)/4) ⇒ I+J =8((π/3)−(√3))−(√3) =((8π)/3)−9(√3)  I−J =∫_(−(π/3)) ^(π/3) x^2 {(cosx−sinx)^3 −(cosx+sinx)^3 }dx  =∫_(−(π/3)) ^(π/3) x^2 (−2sinx)(1−2cosx sinx +cos(2x) +1+2cosxsinx}dx  =−2∫_(−(π/3)) ^(π/3) x^2 sinx{2+cos(2x)}dx  =0  because the function is odd ⇒I−J =0  ⇒I =J ⇒  ⇒2I =((8π)/3)−9(√3) ⇒I =((4π)/3)−(9/2)(√3)
letI=π3π3x2{cosxsinx}3andJ=π6π6x2{cosx+sinx}3dxwehaveI+J=π3π3x2(cosxsinx+cosx+sinx)((cosxsinx)2(cosxsinx)(cosx+sinx)+(cosx+sinx)2}dx=π3π32x2cosx{12cosxsinx(cos2xsin2x)+1+2cosxsinx}dx=π3π32x2cosx{2cos(2x)}dx=40π3x2cosx(2cos(2x))dx=80π3x2cosxdx40π3cosx.cos(2x)dxbyparts0π3x2cosxdx=[x2sinx]0π30π32xsinxdx=2{[xcosx]0π30π3(cosx)dx}=2{π6+[sinx]0π3}=2{π6+32}=π330π3cosxcos(2x)dx=120π3(cos(3x)+cosx)dx=16[sin(3x)]0π3+12[sinx]0π3=1232=34I+J=8(π33)3=8π393IJ=π3π3x2{(cosxsinx)3(cosx+sinx)3}dx=π3π3x2(2sinx)(12cosxsinx+cos(2x)+1+2cosxsinx}dx=2π3π3x2sinx{2+cos(2x)}dx=0becausethefunctionisoddIJ=0I=J2I=8π393I=4π3923

Leave a Reply

Your email address will not be published. Required fields are marked *