Menu Close

find-pi-4-pi-4-cosx-2-5sinx-dx-




Question Number 65776 by mathmax by abdo last updated on 03/Aug/19
find  ∫_(−(π/4)) ^(π/4)   ((cosx)/(2+5sinx))dx
$${find}\:\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{cosx}}{\mathrm{2}+\mathrm{5}{sinx}}{dx} \\ $$
Commented by kaivan.ahmadi last updated on 04/Aug/19
u=2+5sinx⇒du=5cosxdx  (1/5)∫(du/u)=(1/5)lnu=(1/5)ln(2+5sinx)∣_(−(π/4)) ^(π/4) =
$${u}=\mathrm{2}+\mathrm{5}{sinx}\Rightarrow{du}=\mathrm{5}{cosxdx} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}\int\frac{{du}}{{u}}=\frac{\mathrm{1}}{\mathrm{5}}{lnu}=\frac{\mathrm{1}}{\mathrm{5}}{ln}\left(\mathrm{2}+\mathrm{5}{sinx}\right)\mid_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} = \\ $$