Menu Close

find-pi-6-pi-6-1-tanx-1-sin-2x-dx-




Question Number 66335 by mathmax by abdo last updated on 12/Aug/19
find  ∫_(−(π/6)) ^(π/6)  ((1+tanx)/(1+sin(2x)))dx
$${find}\:\:\int_{−\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \:\frac{\mathrm{1}+{tanx}}{\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Commented by Prithwish sen last updated on 13/Aug/19
∫_(−(π/6)) ^(π/6) ((sec^2 x)/(1+tanx)) dx = [ln(1+tanx)]_((−π)/6) ^(π/6)  = ln(((√3)+1)/( (√3)−1))
$$\int_{−\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{tanx}}\:\mathrm{dx}\:=\:\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{tanx}\right)\right]_{\frac{−\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{6}}} \:=\:\mathrm{ln}\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{1}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *