Menu Close

find-pi-6-pi-6-1-tanx-1-sin-2x-dx-




Question Number 66335 by mathmax by abdo last updated on 12/Aug/19
find  ∫_(−(π/6)) ^(π/6)  ((1+tanx)/(1+sin(2x)))dx
findπ6π61+tanx1+sin(2x)dx
Commented by Prithwish sen last updated on 13/Aug/19
∫_(−(π/6)) ^(π/6) ((sec^2 x)/(1+tanx)) dx = [ln(1+tanx)]_((−π)/6) ^(π/6)  = ln(((√3)+1)/( (√3)−1))
π6π6sec2x1+tanxdx=[ln(1+tanx)]π6π6=ln3+131

Leave a Reply

Your email address will not be published. Required fields are marked *