Menu Close

Find-smallest-a-gt-1-for-which-a-sinx-a-siny-e-y-x-for-x-y-




Question Number 2454 by Yozzi last updated on 20/Nov/15
Find smallest a>1 for which                        ((a+sinx)/(a+siny))≤e^(y−x)   for ∀ x≤y.
Findsmallesta>1forwhicha+sinxa+sinyeyxforxy.
Commented by Rasheed Soomro last updated on 21/Nov/15
Find smallest a>1 for which   ((a+sinx)/(a+siny))≤e^(y−x)   for ∀ x≤y.  −−−−−−−−−−−   ((a+sin x)/(a+sin y))≤e^(y−x)   a+sin x≤e^(y−x) (a+sin y)                    ≤ae^(y−x) +e^(y−x) sin y  a−ae^(y−x) ≤e^(y−x) sin y −sin x  a(1−e^(y−x) )≤e^(y−x) sin y −sin x  a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) ))      assuming y>x [for y=x see sec A]  Since a>1  1<a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) ))  a=Smallest ((e^(y−x) sin y −sin x)/(1−e^(y−x) ))>1  We have to use such values of x and y for which_(−)   ((e^(y−x) sin y −sin x)/(1−e^(y−x) )) is smallest but greater than 1_(−)   For y=x............................section A   ((a+sinx)/(a+siny))≤e^(y−x)    ((a+sin x)/(a+sin x))≤e^(x−x)   1≤1    No help for a  Continue
Findsmallesta>1forwhicha+sinxa+sinyeyxforxy.a+sinxa+sinyeyxa+sinxeyx(a+siny)aeyx+eyxsinyaaeyxeyxsinysinxa(1eyx)eyxsinysinxaeyxsinysinx1eyxassumingy>x[fory=xseesecA]Sincea>11<aeyxsinysinx1eyxa=Smallesteyxsinysinx1eyx>1Wehavetousesuchvaluesofxandyforwhicheyxsinysinx1eyxissmallestbutgreaterthan1Fory=x.sectionAa+sinxa+sinyeyxa+sinxa+sinxexx11NohelpforaContinue
Commented by prakash jain last updated on 20/Nov/15
Since a>1, a+sin y>0 and e^x >0  we can rewrite the inequality as  f(x,y)=ae^x +e^x sin x−(ae^y +e^y sin y)  For f(x,y) ≤0, we need to chose a such  that value at maxima is 0.  f_x =ae^x +e^x sin x+e^x cos x  f_y =−(ae^y +e^x sin y+e^x cos y)  function f will attain maxima or minima  when f_x  and f_y  are both 0.  f_x =0⇒e^x (a+sin x+cos x)=0  a+(√2)sin (x+(π/4))=0  similarly  a+(√2)sin (y+(π/4))=0  The critical points are given by:  x=2πn+2tan^(−1) (((−(√(2−a^2 ))−1)/(a−1))), n∈Z  y=2πm+2tan^(−1) (((−(√(2−a^2 ))−1)/(a−1))), m∈Z  The problem statement is to chose a such  that f(x,y)≤0 at critical points.  To be continued in answer.
Sincea>1,a+siny>0andex>0wecanrewritetheinequalityasf(x,y)=aex+exsinx(aey+eysiny)Forf(x,y)0,weneedtochoseasuchthatvalueatmaximais0.fx=aex+exsinx+excosxfy=(aey+exsiny+excosy)functionfwillattainmaximaorminimawhenfxandfyareboth0.fx=0ex(a+sinx+cosx)=0a+2sin(x+π4)=0similarlya+2sin(y+π4)=0Thecriticalpointsaregivenby:x=2πn+2tan1(2a21a1),nZy=2πm+2tan1(2a21a1),mZTheproblemstatementistochoseasuchthatf(x,y)0atcriticalpoints.Tobecontinuedinanswer.
Answered by prakash jain last updated on 20/Nov/15
At critical point of f(x,y) sinx=siny  so the given inequality is satisfied by all  a>1 (∵e^(y−x) ≥1)  I am not 100% confident of the answer  since I expected a value different than 1.  comments?  The answer a=1 is wrong (see comments  below).   Wrong conclusion was arrived as critical  points for f(x,y) in the comments are only  for LOCAL MAXIMA.
Atcriticalpointoff(x,y)sinx=sinysothegiveninequalityissatisfiedbyalla>1(eyx1)Iamnot100%confidentoftheanswersinceIexpectedavaluedifferentthan1.comments?Theanswera=1iswrong(seecommentsbelow).Wrongconclusionwasarrivedascriticalpointsforf(x,y)inthecommentsareonlyforLOCALMAXIMA.
Commented by Yozzi last updated on 20/Nov/15
I′m unsure about how to tackle  the problem, but how about  this.   If x=y the inequality becomes  ((a+sinx)/(a+sinx))≤e^0 . ∵ a>1 ⇒∄x,a∈R∣a+sinx=0.  So  1≤1 and hence the inequality  holds. In this case  there isn′t any smallest a∈R since  one can infinitely set a to be a value above 1  and very close to 1. No highest lower bound  exists for the set {a∈R∣a>1}.    For y>x⇒y−x>0⇒e^(y−x) >e^0 =1  ∴1−e^(y−x) <0. Keeping note of this we  have   ((a+sinx)/(a+siny))≤e^(y−x)        [a+sinx,a+siny>0 ∵ a>1]  a+sinx≤ae^(y−x) +e^(y−x) siny  a(1−e^(y−x) )≤e^(y−x) siny−sinx  ⇒a≥((e^(y−x) siny−sinx)/(1−e^(y−x) ))       [1−e^(y−x) <0]  a≥((e^(y−x) siny)/(1−e^(y−x) ))−((sinx)/(1−e^(y−x) ))   (∗)    If the RHS of the inequality above  is strictly greater than 1 then the   smallest a possible would be found to  be a=((e^(y−x) siny−sinx)/(1−e^(y−x) )).  If this is true then  ((e^(y−x) siny−sinx)/(1−e^(y−x) ))>1  e^(y−x) siny−sinx<1−e^(y−x)   e^(y−x) (siny+1)<1+sinx  If siny+1≠0  (otherwise siny+1>0)  ∴e^(y−x) <((1+sinx)/(1+siny))    Checking that this is obeyed by the  proposed value for a   ((((e^(y−x) siny−sinx)/(1−e^(y−x) ))+sinx)/(((e^(y−x) siny−sinx)/(1−e^(y−x) ))+siny))≤e^(y−x)   ((e^(y−x) siny−sinx+sinx−e^(y−x) )/(e^(y−x) siny−sinx+siny−e^(y−x) siny))≤e^(y−x)   ((e^(y−x) (siny−1))/(siny−sinx))≤e^(y−x)   ((siny−1)/(siny−sinx))≤1.  y>x so siny≠sinx. If siny>sinx  siny−1≤siny−sinx⇒sinx≤1 (possible)    If siny<sinx⇒siny−1≥siny−sinx  sinx≥1 (possible if x=nπ+(−1)^n (π/2))    Together the cases suggest that the inequality holds  for all x<y, if siny+1≠0.    If the RHS of (∗) is not greater than 1 I  don′t know how one could acquire  the necessary value for a from the  information given. In this case we  must have   a>1.
Imunsureabouthowtotackletheproblem,buthowaboutthis.Ifx=ytheinequalitybecomesa+sinxa+sinxe0.a>1x,aRa+sinx=0.So11andhencetheinequalityholds.InthiscasethereisntanysmallestaRsinceonecaninfinitelysetatobeavalueabove1andverycloseto1.Nohighestlowerboundexistsfortheset{aRa>1}.Fory>xyx>0eyx>e0=11eyx<0.Keepingnoteofthiswehavea+sinxa+sinyeyx[a+sinx,a+siny>0a>1]a+sinxaeyx+eyxsinya(1eyx)eyxsinysinxaeyxsinysinx1eyx[1eyx<0]aeyxsiny1eyxsinx1eyx()IftheRHSoftheinequalityaboveisstrictlygreaterthan1thenthesmallestapossiblewouldbefoundtobea=eyxsinysinx1eyx.Ifthisistruetheneyxsinysinx1eyx>1eyxsinysinx<1eyxeyx(siny+1)<1+sinxIfsiny+10(otherwisesiny+1>0)eyx<1+sinx1+sinyCheckingthatthisisobeyedbytheproposedvalueforaeyxsinysinx1eyx+sinxeyxsinysinx1eyx+sinyeyxeyxsinysinx+sinxeyxeyxsinysinx+sinyeyxsinyeyxeyx(siny1)sinysinxeyxsiny1sinysinx1.y>xsosinysinx.Ifsiny>sinxsiny1sinysinxsinx1(possible)Ifsiny<sinxsiny1sinysinxsinx1(possibleifx=nπ+(1)n(π/2))Togetherthecasessuggestthattheinequalityholdsforallx<y,ifsiny+10.IftheRHSof()isnotgreaterthan1Idontknowhowonecouldacquirethenecessaryvalueforafromtheinformationgiven.Inthiscasewemusthavea>1.
Commented by Yozzi last updated on 20/Nov/15
This question is from an admissions  quiz and I think its purpose is to see  how one breaks it down rather than  obtaining just a value for a. It′s   all about the process rather than the  answer.
ThisquestionisfromanadmissionsquizandIthinkitspurposeistoseehowonebreaksitdownratherthanobtainingjustavaluefora.Itsallabouttheprocessratherthantheanswer.
Commented by prakash jain last updated on 20/Nov/15
Ok. The answer a>1 is wrong  ((1.01+sin x)/(1.01+sin y))≤e^(y−x)   x=(π/2), y=((3π)/2)  ((2.01)/(0.01))=201≰e^π
Ok.Theanswera>1iswrong1.01+sinx1.01+sinyeyxx=π2,y=3π22.010.01=201eπ
Commented by Yozzi last updated on 20/Nov/15
It probably was as simple as   observing no such a exists.
Itprobablywasassimpleasobservingnosuchaexists.
Commented by prakash jain last updated on 20/Nov/15
I have updated answer on where the error is  in the original arguments. If the answer  is no such a exists then we need to prove  that there is no global maxima for f(x,y)  with y>x.
Ihaveupdatedansweronwheretheerrorisintheoriginalarguments.Iftheanswerisnosuchaexiststhenweneedtoprovethatthereisnoglobalmaximaforf(x,y)withy>x.
Commented by Yozzi last updated on 20/Nov/15
Yes.
Yes.

Leave a Reply

Your email address will not be published. Required fields are marked *