Question Number 2454 by Yozzi last updated on 20/Nov/15

Commented by Rasheed Soomro last updated on 21/Nov/15
![Find smallest a>1 for which ((a+sinx)/(a+siny))≤e^(y−x) for ∀ x≤y. −−−−−−−−−−− ((a+sin x)/(a+sin y))≤e^(y−x) a+sin x≤e^(y−x) (a+sin y) ≤ae^(y−x) +e^(y−x) sin y a−ae^(y−x) ≤e^(y−x) sin y −sin x a(1−e^(y−x) )≤e^(y−x) sin y −sin x a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) )) assuming y>x [for y=x see sec A] Since a>1 1<a≤((e^(y−x) sin y −sin x)/(1−e^(y−x) )) a=Smallest ((e^(y−x) sin y −sin x)/(1−e^(y−x) ))>1 We have to use such values of x and y for which_(−) ((e^(y−x) sin y −sin x)/(1−e^(y−x) )) is smallest but greater than 1_(−) For y=x............................section A ((a+sinx)/(a+siny))≤e^(y−x) ((a+sin x)/(a+sin x))≤e^(x−x) 1≤1 No help for a Continue](https://www.tinkutara.com/question/Q2461.png)
Commented by prakash jain last updated on 20/Nov/15

Answered by prakash jain last updated on 20/Nov/15

Commented by Yozzi last updated on 20/Nov/15
![I′m unsure about how to tackle the problem, but how about this. If x=y the inequality becomes ((a+sinx)/(a+sinx))≤e^0 . ∵ a>1 ⇒∄x,a∈R∣a+sinx=0. So 1≤1 and hence the inequality holds. In this case there isn′t any smallest a∈R since one can infinitely set a to be a value above 1 and very close to 1. No highest lower bound exists for the set {a∈R∣a>1}. For y>x⇒y−x>0⇒e^(y−x) >e^0 =1 ∴1−e^(y−x) <0. Keeping note of this we have ((a+sinx)/(a+siny))≤e^(y−x) [a+sinx,a+siny>0 ∵ a>1] a+sinx≤ae^(y−x) +e^(y−x) siny a(1−e^(y−x) )≤e^(y−x) siny−sinx ⇒a≥((e^(y−x) siny−sinx)/(1−e^(y−x) )) [1−e^(y−x) <0] a≥((e^(y−x) siny)/(1−e^(y−x) ))−((sinx)/(1−e^(y−x) )) (∗) If the RHS of the inequality above is strictly greater than 1 then the smallest a possible would be found to be a=((e^(y−x) siny−sinx)/(1−e^(y−x) )). If this is true then ((e^(y−x) siny−sinx)/(1−e^(y−x) ))>1 e^(y−x) siny−sinx<1−e^(y−x) e^(y−x) (siny+1)<1+sinx If siny+1≠0 (otherwise siny+1>0) ∴e^(y−x) <((1+sinx)/(1+siny)) Checking that this is obeyed by the proposed value for a ((((e^(y−x) siny−sinx)/(1−e^(y−x) ))+sinx)/(((e^(y−x) siny−sinx)/(1−e^(y−x) ))+siny))≤e^(y−x) ((e^(y−x) siny−sinx+sinx−e^(y−x) )/(e^(y−x) siny−sinx+siny−e^(y−x) siny))≤e^(y−x) ((e^(y−x) (siny−1))/(siny−sinx))≤e^(y−x) ((siny−1)/(siny−sinx))≤1. y>x so siny≠sinx. If siny>sinx siny−1≤siny−sinx⇒sinx≤1 (possible) If siny<sinx⇒siny−1≥siny−sinx sinx≥1 (possible if x=nπ+(−1)^n (π/2)) Together the cases suggest that the inequality holds for all x<y, if siny+1≠0. If the RHS of (∗) is not greater than 1 I don′t know how one could acquire the necessary value for a from the information given. In this case we must have a>1.](https://www.tinkutara.com/question/Q2467.png)
Commented by Yozzi last updated on 20/Nov/15

Commented by prakash jain last updated on 20/Nov/15

Commented by Yozzi last updated on 20/Nov/15

Commented by prakash jain last updated on 20/Nov/15

Commented by Yozzi last updated on 20/Nov/15
