Menu Close

find-such-that-2-3-4-5-6-




Question Number 1557 by 123456 last updated on 19/Aug/15
find α,β,γ such that  α=β^2   β^3 =γ^4   γ^5 =α^6
findα,β,γsuchthatα=β2β3=γ4γ5=α6
Commented by 123456 last updated on 19/Aug/15
 { ((α=β^2 )),((β^3 =γ^4 )),((γ^5 =α^6 )) :}⇒ { ((α^(15) =β^(30) )),((β^(30) =γ^(40) )),((γ^(40) =α^(48) )) :}  [(1,2),(3,4),(5,6)]  [(3,6),(6,8),(5,6)]  [(15,30),(30,40),(40,48)]  α^(15) =α^(48) ⇒α^(15) (α^(33) −1)=0
{α=β2β3=γ4γ5=α6{α15=β30β30=γ40γ40=α48[(1,2),(3,4),(5,6)][(3,6),(6,8),(5,6)][(15,30),(30,40),(40,48)]α15=α48α15(α331)=0
Answered by Rasheed Soomro last updated on 20/Aug/15
α=β^2  ⇒α^3 =β^6 ..............(I)  β^3 =γ^4  ⇒β^6 =γ^8  ............(II)  From (I)   and   (II)     α^3 =γ^(8  ) ⇒α^6 =γ^(16)  .....(III)  γ^5 =α^6  ⇒α^6 =γ^5 .........................(IV)  From (III)  and    (IV)  γ^5 =γ^(16) ⇒γ^(16) −γ^5 =0⇒ γ^5 (γ^(11) −1)=0  γ=0 ∨ γ^(11) =1 , γ  is 11th  root of unity.  [Above was the process of eliminating   α  and   β.  In the same way  by eliminating   β    and    γ   and  after that  by    α    and    γ     we will get results about   α     and     β  respectively.]  Results about α and  β  α=0 ∨ α^(33) =1 , α  is 33rd  root of unity.  β=0 ∨ β^(33) =1 , β  is 33rd  root of unity.  (α,β,γ)=(0,0,0)  Solution of α or β:  {0}∪{1,w,ω^2 ,...ω^(32) },ω=cos((2π)/(33))+ı sin((2π)/(33))  Solution of  γ: {0}∪{1,ρ,ρ^2 ,...ρ^(10) },ρ=cos((2π)/(11))+ı sin((2π)/(11))  Let (α,β,γ)=(ω^p ,ω^q ,ρ^r ) fulfilling given conditions.  w^p =(ω^q )^2 ⇒ p=2q................................I  (ω^q )^3 =(ρ^r )^4 ⇒ω^(3q) =ρ^(4r) ⇒ω^(15q) =ρ^(20r) ...........II  (ρ^r )^5 =(ω^p )^6 ⇒ρ^(5r) =ω^(6p) ⇒ρ^(20r) =ω^(24p) ..........III  p=2q.......[from I]  24p=15q⇒8p=5q...............[from II  and  III]  8(2q)=5q⇒q=0⇒p=2(0)=0⇒p=0  ρ^(20r) =ω^(24p) =ω^(24(0)) =1=ρ^0  ⇒ 20r=0 ⇒r=0  Sol. Set : {(0,0,0),(1,1,1)}
α=β2α3=β6..(I)β3=γ4β6=γ8(II)From(I)and(II)α3=γ8α6=γ16..(III)γ5=α6α6=γ5.(IV)From(III)and(IV)γ5=γ16γ16γ5=0γ5(γ111)=0γ=0γ11=1,γis11throotofunity.[Abovewastheprocessofeliminatingαandβ.Inthesamewaybyeliminatingβandγandafterthatbyαandγwewillgetresultsaboutαandβrespectively.]Resultsaboutαandβα=0α33=1,αis33rdrootofunity.β=0β33=1,βis33rdrootofunity.(α,β,γ)=(0,0,0)Solutionofαorβ:{0}{1,w,ω2,ω32},ω=cos2π33+ısin2π33Solutionofγ:{0}{1,ρ,ρ2,ρ10},ρ=cos2π11+ısin2π11Let(α,β,γ)=(ωp,ωq,ρr)fulfillinggivenconditions.wp=(ωq)2p=2q..I(ωq)3=(ρr)4ω3q=ρ4rω15q=ρ20r..II(ρr)5=(ωp)6ρ5r=ω6pρ20r=ω24p.IIIp=2q.[fromI]24p=15q8p=5q[fromIIandIII]8(2q)=5qq=0p=2(0)=0p=0ρ20r=ω24p=ω24(0)=1=ρ020r=0r=0Sol.Set:{(0,0,0),(1,1,1)}

Leave a Reply

Your email address will not be published. Required fields are marked *