Menu Close

Find-th-greatest-coefficients-in-the-expansion-of-3a-5b-18-2-If-three-consecutive-coefficient-of-1-x-n-are-28-56-70-find-the-value-of-n-




Question Number 75242 by peter frank last updated on 08/Dec/19
Find th greatest coefficients  in the expansion of  (3a+5b)^(18)     2)If three consecutive   coefficient of (1+x)^n  are 28,56,70.  find the value of n
Findthgreatestcoefficientsintheexpansionof(3a+5b)182)Ifthreeconsecutivecoefficientof(1+x)nare28,56,70.findthevalueofn
Answered by mr W last updated on 08/Dec/19
(1)  (3a+5b)^(18) =Σ_(k=0) ^(18) C_k ^(18) (3a)^k (5b)^(18−k)   =Σ_(k=0) ^(18) 3^k 5^(18−k) C_k ^(18) a^k b^(18−k)   a_k =3^k 5^(18−k) C_k ^(18)   a_(k+1) =3^(k+1) 5^(17−k) C_(k+1) ^(18)   (a_(k+1) /a_k )=((3^(k+1) 5^(17−k) C_(k+1) ^(18) )/(3^k 5^(18−k) C_k ^(18) ))=((3(18−k))/(5(k+1)))<1  5k+5>54−3k  k>((49)/8)=6.12=7 ⇒a_8 <a_7   max. a_k  is a_7 =3^7 5^(11) C_7 ^(18) =3398392968750000
(1)(3a+5b)18=18k=0Ck18(3a)k(5b)18k=18k=03k518kCk18akb18kak=3k518kCk18ak+1=3k+1517kCk+118ak+1ak=3k+1517kCk+1183k518kCk18=3(18k)5(k+1)<15k+5>543kk>498=6.12=7a8<a7max.akisa7=37511C718=3398392968750000
Commented by peter frank last updated on 09/Dec/19
thank you very much
thankyouverymuch
Answered by mr W last updated on 08/Dec/19
(2)  C_k ^n =((n!)/(k!(n−k)!))=28  C_(k+1) ^n =((n!)/((k+1)!(n−k−1)!))=56  ((n−k)/(k+1))=((56)/(28))=2  ⇒n=3k+2  C_(k+2) ^n =((n!)/((k+2)!(n−k−2)!))=70  ((n−k−1)/(k+2))=((70)/(56))  ⇒28n=63k+98  ⇒28(3k+2)=63k+98  ⇒k=2  ⇒n=8
(2)Ckn=n!k!(nk)!=28Ck+1n=n!(k+1)!(nk1)!=56nkk+1=5628=2n=3k+2Ck+2n=n!(k+2)!(nk2)!=70nk1k+2=705628n=63k+9828(3k+2)=63k+98k=2n=8
Commented by peter frank last updated on 09/Dec/19
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *