Menu Close

Find-the-area-generated-when-the-curve-x-a-sin-1-cos-0-pi-rotates-about-x-axis-through-2pi-radian-Note-1-cos-2-sin-2-2-




Question Number 12577 by tawa last updated on 26/Apr/17
Find the area generated when the curve  x = a(θ − sinθ), (1 − cosθ)  θ = 0, θ = π  rotates about x−axis through 2π radian.  Note: 1 − cosθ = 2 sin^2 ((θ/2))
Findtheareageneratedwhenthecurvex=a(θsinθ),(1cosθ)θ=0,θ=πrotatesaboutxaxisthrough2πradian.Note:1cosθ=2sin2(θ2)
Answered by mrW1 last updated on 26/Apr/17
x=a(θ−sin θ)  y=1−cos θ  A=2π∫_x_1  ^x_2  ydx=2πa∫(1−cos θ)(1−cos θ)dθ  =2πa∫4sin^4  (θ/2) dθ  =16πa∫_0 ^π sin^4  (θ/2) d(θ/2)  =16πa∫_0 ^(π/2) sin^4  t dt  =16πa[((sin 4t−8sin 2t+12t)/(32))]_0 ^(π/2)   =16πa((12)/(32))×(π/2)=3aπ^2
x=a(θsinθ)y=1cosθA=2πx1x2ydx=2πa(1cosθ)(1cosθ)dθ=2πa4sin4θ2dθ=16πa0πsin4θ2dθ2=16πa0π2sin4tdt=16πa[sin4t8sin2t+12t32]0π2=16πa1232×π2=3aπ2
Commented by tawa last updated on 26/Apr/17
God bless you sir.
Godblessyousir.
Answered by ajfour last updated on 26/Apr/17
Area generated = 2π∫_0 ^( x_1 ) ydx  A=2π∫_0 ^( π) a(1−cos θ)^2 dθ    ...(i)     =2π∫^( π) _0 a(1+cos θ)^2 dθ    ...(ii)  (i)+(ii) gives:  2A=2πa∫_0 ^( π) (2+2cos^2 θ)dθ  A=πa∫_0 ^( π) (3+cos 2θ)dθ      =πa[3θ+((sin 2θ)/2) ]_0 ^π   A=3𝛑^2 a .
Areagenerated=2π0x1ydxA=2π0πa(1cosθ)2dθ(i)=2π0πa(1+cosθ)2dθ(ii)(i)+(ii)gives:2A=2πa0π(2+2cos2θ)dθA=πa0π(3+cos2θ)dθ=πa[3θ+sin2θ2]0πA=3π2a.
Commented by tawa last updated on 26/Apr/17
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *